修平科技大學電機工程系

DEPARTMENT OF ELECTRICAL ENGINEERING
HSIUPING UNIVERSITY OF SCIENCE AND TECHNOLOGY

實務專題報告書

風力發電機

指 導 老 師:趙維和

專題製作學生:

四技電四甲 王裕興 BD99029

四技電四甲 盧亮宇 BD99006

中華民國 102年 12月 30日

前言

世界面臨能源危機,化石能源慢慢被再生能源取代(太陽能·風能· 地熱能等),其中風力發電是大幅成長能源產業中的一項,風力發電機,低 噪音低震動的優勢,能夠以無汙染的情況下進行發電,適合用在·海岸· 公共設施及都會家庭使用,是一項相當好的綠色能源,未來的社會很有可 能政府會大量提倡採用綠色能源,所以我覺得風力發電不但吻合環境保護 且無汙染,讓地球不會再被破壞是相當好的綠色能源。

目 錄

第一章	序論
專題目的	1
專題構想	1
第二章	相關原理
1. 葉片樹目	2
2. 葉片厚度	2
3. 角度	2
4. 半徑	3
第三章	專題製作流程與實驗過程
	專題製作流程與實驗過程
1. 製作過程	
 製作過程 測試實驗 	4
 製作過程 測試實驗 使用器材 	4 6
 製作過程 測試實驗 使用器材 結論 	
 製作過程 測試實驗 使用器材 結論 	

圖目錄

圖	1	4
圖	2	4
圖	3	5
圖	4	5
圖	5	6
圖	6	6
圖	7	7
圖	8	7
圖	9	8
圖	10	8
圖	11	9
圖	12	9
圖	13	10
圖	14	10
圖	15	11
圖	16	11

第一章 序論

1. 專題目的

以四級到六級人造風實驗以三組三片不同大小葉片,使用三用電表分析測得最佳風力發電機的葉片。

2. 專題構想

本專題將作一個小型垂直軸風力發電機葉片的分析,規格選定30W 垂直軸風力發電機,30公分垂直葉片,外型採用資料查詢所作。

第二章 相關原理

1. 葉片數目

選擇三片是因為二片和三片的性能表現差不多,到底兩者之間有甚麼差別?二片型的風車比三片的風車發出嘎嘎聲的噪音大很多。原因是當風車葉片轉成垂直狀態時,上下兩片葉片掃過的風的風速是不一樣的。造成這個問題的專有名詞叫做"亂流"。因為掃過頂端及底部的風速不一樣,所以作用在頂端葉片的作用力比底部葉片的作用力大,造成上下作用力不平衡風車發生抖動而產生出嘎嘎響的聲音。是種作用力不平衡的現象,葉片上下垂直時最嚴重·葉片呈水平時沒有·葉片在對角線位置時作用力不平衡的問題就很複雜了。為什麼要三片葉片的風車呢?因為三片的沒有作用力不平衡的問題。

2. 葉片厚度

我們使用2MM壓克力薄片型葉片,原因是盡可能的作的越薄越好。 靠近基座部分的尖端速度比很低,阻/升力比值就不是很重要了。

3. 角度

我們經由網路資料查詢所得,討論出風力發電機葉片裝設角度一慮採 用 4 5 度角裝設來進行實驗。

4. 半徑

當葉片長度增加時,重量的增加要快於能量的提取,因為重量的增加和風力發電機葉片長度,而風力發電機產生的電能和葉片長度,所以我們葉片長度一慮採用30公分長。

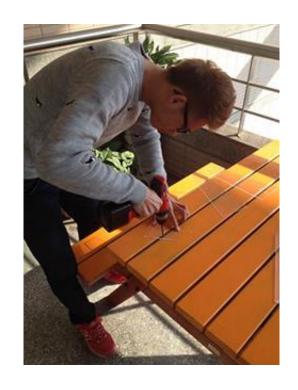
	上底	下底	長度
小型葉片	5 C M	1 0 C M	3 0 C M
中型葉片	6.25CM	12.5CM	3 0 C M
大型葉片	8 C M	15.5CM	3 0 C M

(三組三片風力發電機葉片的規格表)

第三章 專題製作流程與實驗過程

1. 製作過程

(圖1.作線路焊接)


(圖 2. 葉片整修)

(圖 3. 葉片鑽孔)

(圖 4. 角度整修)

(圖 5. 大型葉片穿孔)

2. 測試實驗

(圖 6. 風速實驗)

(圖7.觀察模組板)

(圖 8. 三用電表數據)

3. 使用器材

(圖 9. 器具)

(圖 10.30W 風力發電機)

(圖 11. 第一組測試葉片)

(圖 12. 第二組測試葉片)

(圖 13. 第三組測試葉片)

(圖 14.32 分之 5 乘 8 分之 3 螺絲 6 個)

(圖 15.16 分之 3 螺母 6 個)

(圖16.16分之3乘8分之3六腳螺絲6個)

	電壓/電流	6.2ms/四級	9.2ms/五級	13.1ms/六
		風	風	級風
小型葉片	電壓	3. 8V	3. 9V	4. 0V
(5+10)x30/2	電流	0. 1A	0.1A	0. 1A
中型葉片	電壓	3. 8V	3. 8V	3. 8V
(6. 25+12. 5)x30/2	電流	0.1A	0.1A	0. 1A
大型葉片	電壓	4. 0V	4. 0V	4. 0V
(8+15.5)x30/2	電流	0.1A	0. 1A	0.1A

(測試結果表)

結論

我們一開始預期中型葉片效果最佳,因為小型葉片受風面積不夠大,大型葉片可能太重轉不動,但是實驗結果與預期不同,大型葉片出電壓最大也最穩定,小型葉片和中型葉片雖然在最大風速六級風,也能達到相同的電壓,但是電壓較為不穩定,在低速風力與高速風力電壓也是浮動的,且大型葉片電壓較中型葉片高,所以大型葉片在經過實驗後,效果最好。

第四章 参考文獻

本文獻參考:

http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/ccd=PZRNi_/record ?r1=1&h1=0

- [1] David M. Eggleston and Forrest S. Stoddard, "Wind turbine engineering design", 1987.
- [2] Joseph Katz and Allen Plotkin, "Low speed aerodynamics", 2001.
- [3] Wayne Johnson, "Helicopter theory", 1980.
- [4] W.Z. Stepniewski and C.N Keys, "Rotary wing aerodynamics", 1984.
- [5]H.Glauert, "Aerodynamic theory: Ageneral review of progress-Vol.4", 1976.
- [6]賴增,"塔式風力發電之研究",1980.
- [7]牛山泉,"小型風車設計及製造",1982.
- [8] John D. Anderson, JR. "Fundamentals of aerodynamics", 1991.
- [9] Arnold M. Kuethe and Chuen-Yen Chow, "Foundations of aerodynamics".
- [9]Ira H. Abbott and Albert E. von Doenhoff, "Theory of wing sections", 1958.
- [10] Izumi, and Toshihiko and Yukihiro, "An experiment study of the two-staged wind turbines", 1996.
- [11] Jonathan Alkahe and Omri Rand, "Analytic extraction of the elastic coupling mechanisms in composite blades", 2000.
- [12] Kenneth Thomsen and Poul Sorensen, "Fatigue loads for wind turbines operating in wakes", 1999.
- [13]M. E. Bechly and P. D. Clausen, "Structural design of a composite wind turbine blade using finite element analysis", 1995.
- [14] Anindya Ghoshal, Mannur J. Sundaresan, Mark J. Scgulz and P. Frank Pai, "Structural health monitoring techniques for wind turbine blades", 2000.
- [15]Zhaohui Du and M. S. Selig, "The effect of rotation on the boundary layer of a wind turbine blade", 1999.

- [16]工業技術研究院能源與礦業研究所,"40KW 級小型風力機研製及應用推廣計劃-WT2 風力機初步設計報告",1985.
- [17] 工業技術研究院能源與礦業研究所,"WT3 150KW 風力機運轉試驗改良",1990.
- [18] 工業技術研究院能源與礦業研究所, "WT1A 四千瓦風力機葉片之研製", 1984.
- [19] 工業技術研究院能源與礦業研究所,"腹梁補強玻璃纖維風機葉片之研製",1984.
- [20] 工業技術研究院能源與礦業研究所,"風力機玻纖葉片之研製",1990.

第六章 作者簡介

姓名:王裕興

職位:組長

擁有證照:工業配線乙級

興趣:打球

姓名:盧亮宇

職位:組員

擁有證照:工業配線乙級

興趣:慢跑