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Abstract 

This project presents a nonlinear stability analysis of thin viscoelastic liquid films flowing 

down a plate moving in a vertical direction. The long-wave perturbation method is employed to 

derive the generalized kinematic equations for a free film interface. The elaborated nonlinear 

film flow model is solved by the method of multiple scales. The modeling results clearly 

indicate that both subcritical instability and supercritical stability conditions are possibly to 

occur in the film flow system. The effect of the down-moving motion of the vertical plate tends 

to enhance the stability of the film flow.  
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1. Introduction 

The stability characterization of film 

flows traveling down along a vertical or an 

inclined plate is of great importance to the 

quality control of many industrial products. 

Thus, the research effort made toward 

improvement on this matter has been 

emerged as a subject of great interest to 

numerous worldwide researchers in past 

decades. Typical application examples can be 

found across different industrial sectors 

including mechanical, chemical and nuclear 

engineering.  It is well known that the 

stability controls are generally required in 

precision finishing processes of coating, laser 

cutting, and casting.  Since macroscopic 

instability can cause disastrous conditions to 

film flows and thus very detrimental to the 

needed quality of final products, it is highly 

desirable to develop suitable working 

conditions for homogeneous film growth to 

adapt to various flow configurations and 

associated time-dependent properties. 

Benney [1] investigated the nonlinear 

evolution equation for free surfaces of the 

film flows by using the method of small 

parameters.  The solutions thus obtained 

were used to predict nonlinear instability 

conditions. However, the solutions cannot be 

used to predict supercritical stability since 

the influence of surface tension is neglected 

in the small-parameter modeling method. 

The effect of surface tension on flow stability 

was considered significant by Lin [2], 

Nakaya [3], and Krishna et al. [4]. Pumir et 

al. [5] further included the effect of surface 

tension in the film flow model and solved for 

the solitary wave solutions. Hwang et al. [6] 

showed that both the conditions of 

supercritical stability and sub-critical 

instability for a film flow system are possible 

to occur. Renardy et al. [7] and Tsai et al. [8] 

presented the work of both linear and 

nonlinear stability analyses for a film flow 

traveling down along an inclined or a vertical 

plate. Detailed flow analysis was found of 

great importance in the development of 

stability theory for characterizing various 

behaviors of film flows.  

Andersson et al. [9] studied the 

gravity-driven flow of a viscoelastic film 

flow traveling down along a vertical wall. 

The derived analytical expression of film 

thickness reveals that the film thickness of a 

viscoelastic film can develop more rapidly 

than that of the Newtonian film in 

downstream asymptotic states. Walters [10] 

analyzed the motion behavior of a 

viscoelastic film flow that is confined in 

between two coaxial cylinders. Cheng et al. 



     

[11] studied the stability of thin viscoelastic 

film flow traveling down along a vertical 

wall. The results of their studies indicate that 

the viscoelastic parameter indeed plays a 

significant role in destabilizing the film flow. 

After careful literature review on the 

papers of thin viscoelastic film flows 

raveling down along a vertical plate, it was 

found that the stability of thin viscoelastic 

film flows moving along vertical plates 

appeared to be very important in various 

coating, painting, surface drawing and 

lubrication processes.  This type of stability 

problems has not yet been fully explored so 

far in the literature. The types of stability 

problems are indeed of great importance for 

many industrial applications. In this paper, 

the finite-amplitude stability of a thin 

viscoelastic film flow traveling down along a 

vertical quiescent, up-moving, and 

down-moving plate is thoroughly 

investigated. The influence of the plate 

moving styles on the equilibrium finite 

amplitude is studied and characterized. 

Several numerical examples are presented to 

verify the computational results and also to 

illustrate the effectiveness of the proposed 

modeling approach. 

2. Generalized Kinematic 

Equation 

Fig.1 shows the configuration of a thin 

viscoelastic film flow traveling down along a 

vertically moving plate. The fluid used for 

study is an incompressible viscoelastic 

prototype that is designated as liquid B ′′  by 

Beard and Walters[12]. The Walters’ liquid 

B ′′  represents an approximation to the first 

order in elasticity, i.e. for short or rapidly 

fading memory fluids. All associated 

physical properties and the rate of film flow 

are assumed to be constant (i.e. 

time-invariant). Based on the given 

assumptions, the velocity fields of the film 

flow can be represented by 
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where ρ is the density of the film flow. 

Individual stress components can be 

expressed in terms of velocity gradient and 

flow pressure as 
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where  and  are velocity components 

in  and  directions, respectively.  p 

is the flow pressure, 

*u *v
*x *y

ρ  is the film density, 

and μ  is the dynamic viscosity.  The 

boundary conditions for the film flow system 

at the plate surface of  can be 

expressed as 

0* =y

    (7) ** Uu =
    (8) 0* =v

where U  is the moving velocity of the 

vertical plate.  The boundary conditions for 

the film flow at free surface of  are 

derived based on the results given by 

Edwards et al. [13].  The shear stress for 

film flow at free surface is given as   
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The normal stress for film flow at free 

surface is given as 
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The kinematic condition that the flow 

velocity normal to a free surface is naught 

can be given as 
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where  is the ambient pressure,  is 

the surface tension,  is the local film 

thickness. The variable associated with a 

superscript “ * “ stands for a dimensional 

quantity. By introducing the stream function 

, the dimensional velocity components 

can now be expressed as  

*

ap *S
*h

*ϕ

   
*

*
*

*

*
* ,

x
v

y
u

∂
∂−=

∂
∂= ϕϕ  (12) 

In order to minimize the flow variables and 

to simplify the analysis procedure, it is 

customary to define dimensionless variables 

as 
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The moving velocity of the vertical plate can 

then be expressed as 

    (14) *

0

* uZU =

where Z is a specific constant ratio of the 

plate velocity to the free stream velocity. 

Since the modes of long-wavelength 

that gives the smallest wave number are most 

likely to induce flow instability for the film 

flow [4,5], the dimensionless wave number 

of the long-wavelength mode, α , is then 

chosen as the perturbation parameter for 

variable expansion.  By so doing the stream 

function and flow pressure can be perturbed 

and represented as 
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In practice, the non-dimensional surface 

tension S is a large value. The term  

can be treated as a quantity of zero-th order 

[8]. The generalized nonlinear kinematic 

equation can be obtained as  
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In order to characterize more precisely 

the effect of vertical plate motion on the 

stability behaviors of a down-traveling thin 

film flow, a detailed numerical investigation 

on flow stability is carried out.  Three 

different kinds of plate-moving styles, i.e. 

stationary, up-moving, and down-moving 

movements, for various speeds are used to 

characterize the behaviors of stable thin film 

flows traveling down along the moving plate.  

The flow rate of the film flow is assumed to 

be constant. The variations of local film 

thickness and the flow velocity at free 

surface in equilibrium are defined as 
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where 
*

0u  is the velocity at free surface for 

a static plate in equilibrium state, and 
*

0h  is 

the film thickness in equilibrium state when 

the plate is static. 

3. Stability Analysis 

The dimensionless film thickness when 

expressed in perturbed state can be given as 

   ),(1),( txtxh η+=  (25) 

where η  is a perturbed quantity of 

stationary film thickness. By inserting 

equation (25) into equation (17) and 

collecting all terms up to the order of , 

the evolution equation of 
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where all the values of A, B, C, D, E and 

their derivatives are evaluated at the 

dimensionless film height of the film h=1. 

3.1.Linear stability analysis 
To characterize the linear behaviors of 

the film flow, the nonlinear terms in equation 

(26) are assumed insignificant and can be 

neglected to obtain the linearized equation  

   0=+++ xxxxxxxt CBA ηηηη  (27) 

The normal mode analysis [16] can be 

performed by assuming that 
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where  is the perturbed wave amplitude, 

and c.c. is the associated complex conjugate 

counterpart. The complex wave celerity, d, 

can be expressed as 
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3.2. Nonlinear stability analysis 
In order to characterize the nonlinear 

behaviors of thin film flows, the method of 

multiple scales is employed here and the 

resulting Ginzburg-Landau equation [14] can 

be derived as 
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In the above expressions, the overhead bar 

denotes the complex conjugate counterpart 

of the underlying variables.  Eq. (30) can be 

used to characterize the weak nonlinear 

behaviors of the traveling film flow. The 

solution of the exponential form is assumed 

and given as 

])(exp[ 220 ttibaa −=          (35) 

By substituting the above expression into Eq. 

(30), one can obtain 
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The condition for a supercritical stable 

region to exist in the linearly unstable region 

 is .  Thus, the associated 

wave amplitude 

)0( >id 01 >E

0aε  becomes 

1

0 E
da i=ε                (38) 

The nonlinear wave speed is now derived 

and given as 

   )(
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On the other hand, the condition for the flow 

behavior of sub-critical instability in the 

linearly stable region  is . 

The threshold amplitude of the wave is 

denoted as 

)0( <id 01 <E

0aε . The sub-critical stable 

region can only be found for the condition of 

. The neutral stability curve can be 

derived and plotted for the condition of 

. Based on the above discussion, it is 

obvious that the Ginzburg-Landau equation 

can be used to characterize various flow 

states. 

01 >E
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4. Numerical Illustrations and 

Discussions 

A numerical example is presented here 

to illustrate the effectiveness of the proposed 

modeling approach for characterizing the 

thin viscoelastic film flow traveling down 

along a vertically moving plate. In order to 

reliably verify the results of theoretic 

derivation, a finite amplitude perturbation 

apparatus is used to numerically generate the 

needed perturbation parameters for linear 

stability analyses.  It is obvious from the 

nonlinear kinematic equation that the 

stability of a thin-film flow is closely related 

and can be characterized by several flow 

variables including Reynolds number, Re, 

velocity ratio of the plate to free stream, Z, 

viscoelastic parameter, k, and dimensionless 

 



Nonlinear stability characterization of thin viscoelastic liquid films flowing down a plate moving in a vertical direction: Hung Ming Sung, Chih-Hsin Tsai, Chung-Ting Hsu  

 

perturbation wave number, . Some 

important features appeared in modeling 

results are carefully extracted and used to 

compare with some conclusive results given 

in the literature.   

Fig. 1 shows the schematic diagram of a 

thin viscoelastic film flow traveling down 

along a vertically down-moving upright plate.  

Physical parameters that are selected for 

study include (1) Reynolds numbers ranging 

from 0 to 15, (2) the dimensionless 

perturbation wave numbers ranging from 0 to 

0.12, (3) the value of viscoelastic parameter 

is given as 0.125[11], and (4) the velocity 

ratios Z for use in this study include –0.42, 

-0.32, -0.18, 0, 0.23, 0.51, 0.85. A constant 

dimensionless surface tension value is given 

for computation to enable the study of film 

flow stability behaviors for different plate- 

moving conditions of moving-up (Z = -0.42, 

-0.32, -0.18), stationary (Z = 0), and 

moving-down (Z = 0.23, 0.51, 0.85). In other 

words, S is selected as 6173.5 [11].  This 

value is selected here for study mainly for 

comparing the final result with data given in 

the literature.  It is found that the results 

obtained by using the proposed method for 

the thin viscoelastic film flow traveling down 

along a stationary vertical plate (i.e. Z = 0) 

agree well with those data given by Cheng et 

al. [11].  

As the perturbed wave grows to finite 

amplitude, the linear stability theory is no 

longer valid for accurate prediction of flow 

behaviors. The nonlinear stability analysis 

will have to be used to study the effect of 

finite amplitude disturbances on the stability 

behaviors of the flow in the linearly stable 

region.  In other words, the nonlinear, 

instead of linear, flow stability theory will 

have to be used to characterize the behavior 

of sub-critical instability in the linearly stable 

region.  By using the nonlinear flow 

stability theory, one can characterize two 

different possible flow behaviors including 

(1) subsequent nonlinear evolution of 

disturbances in the linearly unstable region 

may be redeveloped to become a new 

equilibrium state of finite amplitudes (i.e. 

supercritical stability), or (2) the flow may 

become unstable eventually.  The flow 

instability in the linearly stable region, as 

named sub-critical instability, can be easily 

realized by setting the variable  in Eq. 

(36) to a negative value.  In other words, if 

 in Eq. (36) is a negative value, the 

amplitude of disturbed waves in the linearly 

stable region is possibly to develop into a 

unstable state. This is completely different 

from that of the prediction obtained by the 

1E

1E



     

linear stability analysis that gives the result 

of strict stability. The flow stability in the 

linearly unstable region, as named 

supercritical stability, can be easily realized 

by setting the variable  in Eq. (36) to a 

positive value. In other words, if  in Eq. 

(36) is a positive value, the amplitude of 

disturbed wave in the linearly unstable 

region may be redeveloped to a new 

equilibrium state of finite amplitudes. The 

nonlinear neutral stability curves can be 

obtained by simultaneously setting  

in Eq. (29) and  in Eq. (33). The areas 

near the neutral stability curves in Figs. 

2(a)-2(e) reveal that several different flow 

conditions including sub-critical instability 

, sub-critical 

stability , supercritical 

stability , and explosive 

supercritical instability , are 

possibly to occur at different velocity ratios, 

Z.   

1E

1E

0=id
01 =E
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Fig. 2(a) shows the nonlinear neutral 

stability curves of the film flow traveling 

down along a stationary (i.e. Z=0) vertical 

plate. The nonlinear neutral stability curves 

of the film flow traveling down along a 

vertical-moving plate for velocity ratios of Z 

= 0.23, 0.51, -0.18, -0.32 are computed and 

presented in Figs. 2(b)-2(e). The results 

indicate that when the down-moving plate 

velocity increases, the areas for both regions 

of sub-critical instability and sub-critical 

stability increase gradually.  It also deserves 

noting that when the down-moving plate 

velocity increases, the area for the region of 

explosive supercritical instability decreases 

gradually, and the region of supercritical 

stability presents no obvious change. On the 

other hand, when up-moving plate velocity 

increases, the areas for both regions of 

sub-critical instability and sub-critical 

stability decrease gradually, the area for the 

region of explosive supercritical instability 

increases gradually, and the region of 

supercritical stability presents no obvious 

change. It is clear that in Figs. 2(a)-2(e) the 

areas of shaded regions (including 

sub-critical instability and explosive 

supercritical instability) decrease as the 

down-moving plate velocity increases. Also, 

the shaded areas increase as the up-moving 

plate velocity increases. 

Fig. 3 shows the nonlinear threshold 

amplitude curves of the perturbed wave in 

the sub-critical unstable region for various 

perturbed wave numbers at various velocity 

ratios and 5Re = .  It is found that the 

threshold values of the wave amplitude 

curves in the sub-critical unstable region 
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increase as the down-moving plate velocity 

increases. In such a situation, the film flow 

will become stable. That is to say, if the 

initial finite amplitude disturbance is less 

than the threshold amplitude, the system will 

become conditionally stable. On the other 

hand, if the initial finite amplitude 

disturbance is greater than the threshold 

amplitude, the system will become 

explosively unstable. It is also found that the 

threshold values of the wave amplitude 

curves in the sub-critical unstable region 

decrease as the up-moving plate velocity 

increases. In such a situation, the film flow 

will become unstable.  

Fig.4 shows the nonlinear threshold 

amplitude of the perturbed wave in the 

supercritical stable region for various 

perturbed wave numbers at different velocity 

ratios and 10Re = .  It is found that the 

values of the threshold wave amplitude in the 

supercritical stable region decrease as the 

down-moving plate velocity increases. Also, 

the values of the threshold wave amplitude in 

the supercritical stable region increase as the 

up-moving plate velocity increases. The 

wave speed in Eq. (29) that is predicted by 

using the linear model is a constant value for 

all wave number. However, the wave speed 

in Eq. (39) that is predicted by using the 

nonlinear model is a function of wave 

number, Reynolds number, and velocity ratio 

Z. Fig. 5 shows the nonlinear wave speeds in 

the supercritical stable region under various 

perturbed wave numbers at different velocity 

ratios and 10Re = .  It is found that the 

nonlinear wave speed in the supercritical 

stability region decreases as the 

down-moving plate velocity increases. Also, 

the nonlinear wave speed in the supercritical 

stability region increases as the up-moving 

plate velocity increases. It becomes quite 

obvious from Figs. 4-5 that the film flow 

system becomes more stable as the 

down-moving plate velocity increases. Also, 

the film flow system becomes more unstable 

as the up-moving plate velocity increases. 

5. Conclusion 
The nonlinear stability of a thin 

viscoelastic film flow traveling down along a 

vertical plate under three different plate 

moving conditions is investigated by using 

the method of long-wave perturbation. The 

generalized nonlinear kinematic equations of 

the film flow at the interface of free surface 

is derived and numerically estimated to 

characterize the behaviors of flow stability.  

Based on the results of numerical modeling, 

several conclusions can be drawn as follows:  

1.The results of nonlinear modeling 



     

analyses indicate that when the 

down-moving plate velocity increases, the 

areas for both regions of sub-critical 

instability and sub-critical stability increase 

gradually, the area for the region of explosive 

supercritical instability decreases gradually, 

and the region of supercritical stability 

presents no obvious change. It is found that 

the threshold amplitude of the perturbed 

wave in the sub-critical unstable region 

increases as the down-moving plate velocity 

increases. The values of the threshold wave 

amplitude as well as nonlinear wave speed of 

the flow in the supercritical stable region 

decrease when the down-moving plate 

velocity increases. On the other hand, when 

the up-moving plate velocity increases, the 

areas for both regions of sub-critical 

instability and sub-critical stability decrease 

gradually, the area for the region of explosive 

supercritical instability increases gradually, 

and the region of supercritical stability 

presents no obvious change. It is found that 

the threshold amplitude of the perturbed 

wave in the sub-critical unstable region 

decreases and both of the values of the 

threshold wave amplitude and nonlinear 

wave speed of the flow in the supercritical 

stable region increase as the up-moving plate 

velocity increases.   

2.The stability behaviors of a thin 

viscoelastic film flow are significantly 

affected by the moving style. It is conclusive 

that the down-moving motion of the vertical 

plate tends to enhance the stability of the 

down-traveling film flow on the plate.  
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Fig. 1 Schematic diagram of a thin viscoelastic    

film flow traveling down along a vertically 

moving upright plate 
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Fig. 2(a) Nonlinear neutral stability curves of the 

film flowfor various α  and Re  at Z=0 
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Fig. 2(b) Nonlinear neutral stability curves of the 

film flow for various α  and Re  at Z=0.23 
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Fig. 2(c) Nonlinear neutral stability curves of the 

film flow for various α  and Re  at Z=0.51 
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Fig. 2(d) Nonlinear neutral stability curves of the 
film flow for various α  and Re  at Z=-0.18 
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Fig. 2(e) Nonlinear neutral stability curves of the 

film flow for various α  and Re  at Z=-0.32 
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Fig. 3 Nonlinear threshold finite wave   

amplitude in the sub-critical unstable region for 

various Z and α  at 5Re =  
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Fig. 4 Nonlinear threshold finite wave amplitude 
in the supercritical stable region for various Z and 
α  at 10Re =  
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Fig. 5 Nonlinear wave speeds of the film flow in 

the supercritical stable region for various Z and 

α  at 10Re =  



     

 

 


