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Discrete-time neural predictive  

controller design 
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Abstract 

This paper presents a design methodology for generalized predictive control (GPC) using 

recurrent neural network (RNN). A discrete-time mathematical model using RNN is 

constructed and a learning algorithm adopting an adaptive learning rate (ALR) approach is 

employed to identify the unknown parameters in the recurrent neural network model (RNNM). 

The neural predictive controller (NPC) is obtained via a generalized predictive performance 

criterion, and the convergence of the NPC including the adaptive optimal rate (AOR) by the 

Lyapunov stability theorem is presented. The illustrative process system is used to demonstrate 

the effectiveness of the proposed strategy. Results from numerical simulations show that the 

proposed method is capable of controlling nonlinear system with satisfactory performance 

under setpoint and load changes.  
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1. Introduction 

Model predictive control (MPC) has 

been successfully and extensively used for a 

great deal of industrial plants in both 

academia and industry [1]-[6]. In recent 

years, researchers have proposed many 

theoretical and practical methods for solving 

nonlinear predictive control problems in both 

continuous-time and discrete-time settings 

[7]-[9].  

Since neural networks can approximate 

any nonlinear functions with arbitrary 

accuracy, they have been applied to develop 

adaptive control of nonlinear systems 

[10]-[12]. In particular, the recurrent neural 

network is a dynamical mapping and 

demonstrates good control performance in 

the presence of unmodeled dynamics; each 

recurrent neuron has an internal feedback 

loop, and then captures the dynamic response 

of a system without external feedback 

through delays [13]. In the past decade, 

several researchers have extensively 

investigated RNN-based predictive control 

with its applications to nonlinear systems. 

For examples, Parlos et al. [14] presented an 

architecture for integrating neural networks 

with industrial controllers for use in 

predictive control of complex process 

systems, Li et al. [15] proposed a simple 

recurrent neural network-based adaptive 

predictive control for nonlinear systems with 

known one-step time-delay, and Yoo et al. 

[16] developed generalized predictive control 

based on self-recurrent wavelet neural 

network for stable path tracking of mobile 

robots. 

There are two principal objectives in 

the paper. The first is to propose a 

controller for a class of nonlinear 

systems using NPC with RNN model. 

The RNNM is updated by the gradient 

descent method with the ALR, which are 

used to guarantee the convergences of 

RNNM. Moreover, the convergence of 

the NPC system including the AOR via 

the Lyapunov stability theorem is well 

studied. The second is to illustrate the 

effectiveness of this proposed method for 

control by computer simulations on the 

nonlinear process system. 

The remainder of the paper is organized 

as follows. Section 2 presents the RNN 

model for a class of nonlinear systems. 

Section 3 derives the RNNM-based NPC 

strategy and the NPC algorithm with AOR. 

Section 4 details the capabilities of the 

proposed algorithm for controlling the 

 



     

nonlinear system utilizing computer 

simulations. Section 5 concludes this paper. 

2. RNNM structure 

The section is developed RNNM for the 

nonlinear systems discussed in [17]. This 

class of nonlinear system is described by the 

following nonlinear autoregressive moving 

averaging (NARMA) model 
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where  and  are 

the process output and input, respectively; 

 denotes the nonlinear 

function;  and  are the 

orders of {  and  respectively; 

 represents the known time-delay of 

the system. 
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In this paper, we use a three-layer 

recurrent neural network for RNNM, and the 

RNNM output  is mathematically 

expressed by 
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where  is the connection weight between 

hidden layer and output layer,  is the 

self-feedback weight of hidden layer,  is 

the connection weight between input layer 

and hidden layer,  is a node of the 

hidden layer for the discrete time , and 

the activation function is given by 
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To update the weights of the RNNM, 

the cost function (3) defines as follows; 
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The weights are recursively adjusted in order 

to reduce the cost function (3) to its 

minimum value by the gradient descent 

method, and we have 
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The initial values of , , and  are 

given randomly in rang of . By using 

the chain rule, and then the 
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calculated as follows; 
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In general, if a small value is given for 

the positive learning rate , then the 

convergence of the RNNM will be 

guaranteed, but the convergence rate may be 

rather slow. Conversely, if a large value for 

 is considered, then the RNNM may 

become unstable. The following theorem 

states a sufficient condition of the 

convergence of the RNNM for selecting an 

appropriate learning rate. 

�

�

Theorem 1: Let  be the learning 

rate for the weights of RNNM (2) and  

 be defined as 
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the convergence is guaranteed if  is 
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Proof: Let a Lyapunov function be 

selected as , and the 

detailed proof procedure can be referred to 

[17]. The ALR of the RNNM can be use as 

half of the upper limits in (10) for 

guaranteeing the selected learning rate inside 

the stable region. i.e.,  
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3. NPC algorithm 

This section aims to present a NPC for 

the nonlinear controlled process. According 

to the MPC strategy for the proposed control 

method, the cost function is defined by the 

well-know generalized predictive 

performance criterion [18] as follows: 
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The  is the predictive output 

horizon,  is an input reference signal 

for discrete time ,  is the 

p-step-ahead of , and 

pN

)( pkr +

pk + )(ˆ pky +

)(ˆ ky 0>λ  is the 

selected weighting value. 

The control  is obtained from the 

optimization of the cost function (12) based 

upon using the gradient descent method, that 

is 
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Note that the details of the prediction based 

on neural networks for  can be 

referring to [12]. Letting 

 to reduce the 

computational load, and 
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The control increment  is defined as 

follows: 

)(kuΔ
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To insure that the identification process 

will be successful, the persistently exciting 

(PE) signals [19] are used as the testing 

signals for accomplishing the PE conditions. 

The following theorem states that the 

resulting NPC is convergent 

Theorem 2: Let  be a optimal rate 

for the NPC (17) and  be defined as 

. Then, the convergence 

is guarantee if  is chosen to satisfy  
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Proof: Define a Lyapunov function 

candidate as  
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In order to satisfy the , we should 

restrict  to 
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Therefore, if  choose as the condition 

(18), and then it can be shown that the 

convergence of the proposed NPC algorithm 

is guarantee. The AOR of the NPC is also 

used as half of the upper limits in (18) for 

guaranteeing the learning rate inside the 

stable region. i.e.,  
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The control algorithm is summarized in 

the following procedure.  

Step 1) Set , , )(kr jn λ , and . pN

Step 2) Measure the system output y(k). 

Step 3) Update the weights with the  

      ALR (11) and AOL (25). 

Step 4) Compute the control increment 

       by (17). )(kuΔ

Step 5) Output  to )()1()( kukuku Δ+−=

      the controlled system. 

Step 6) Repeat steps 2-5. 
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Fig. 1. Mean-square error of training. 

 

 



     

4. Computer simulations 

In this section, the illustrative example 

is provided to demonstrate the performance 

of the proposed neural predictive control. 

The example also shows the effect of 

setpoint changes and load disturbances on 

the control systems employing the proposed 

method. 

A simulated laboratory scale 

liquid-level system of Sales and Billings [20] 

is considered. The simulated system is 

composed of a DC pump to feed water into a 

conical flask that, in turn, feeds square tank, 

giving the system second-order dynamics. 

The input is the voltage to the pump motor 

and the system output is the height of the 

water in the conical flask. The aim, under 

simulation conditions, is to follow some 

demanding trajectory for the water level. The 

process model was identified as follows 
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Fig. 2. System model validation. 
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    Fig. 3. Performance of the proposed 

controller. 

(a) Setpoint tracking response. (b) Control signal. 
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Fig. 4. Performance of the PID controller. 

(a) Setpoint tracking response. (b) Control signal. 

From the process model (26), it clearly 

indicates that the input vector of RNNM, the 

output order, the input order, and the 

time-delay can be easily specified 

by , 

, , and . The key parameter 

of the RNNM is chosen as , which 

were shown effective under computer 

simulations. 
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Fig. 1 illustrates the mean-square error 

(MSE) curves of the training. Obviously, the 

ALR algorithm gives faster training to the 

neural network within 1600 iterations. The 

corresponding resulting step response of the 

model validation test is shown in Fig. 2.  

The setpoint tracking responses from a 

proposed controller ( , 40=pN 50=λ ) and a 

velocity-type PID controller ( , 

 and ) are given in Figs. 

3-4. Figs. 3-4 shows that the NPC and PID 

control systems have good response in the 

absence of external loads. 
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Fig. 5. Results for setpoint tracking. 

(a) Performance of the proposed controller. 

(b) Performance of the PID controller. 

In order to investigate disturbance 

rejection capability of the proposed 

controller, the mathematical model (26) was 

perturbed by a disturbance , where 

 for  and  

for . Fig. 4(a) shows the simulation 

results, which reveal that the proposed 

controller demonstrates a good disturbance 

rejection capability. Fig. 5(b) discloses that 

PID controller has an unstable tracking 

performance. The results in Fig. 4 reveal the 

usefulness of the proposed controller, 

especially, for this class of nonlinear process 

systems. 
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5. Conclusions 

This paper has presented a systematic 

design methodology for developing a 

discrete-time neural predictive controller for 

a class of nonlinear systems. Both ALR for 

the RNNM and AOR for NPC are chosen 

based on the Lyapunov stability theory. The 

proposed real-time control algorithm has 

been successfully applied to achieve step 

tracking performance specifications for the 

nonlinear plant. Through the simulative 

results, the proposed control method has 

been proven effective in controlling a class 

of nonlinear systems. 
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