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Abstract

It has been shown that a spinning shaft
has only finite number of critical speeds and
the precessiona modes when the whirl ratio
A>1/2. The system's unbalanced response
can therefore be expressed by the finite
precessional modes and the corresponding

generalized coordinates. This project presents
a spillover stabilizable controller design for
optimal  sensor/actuator  location  and
feedback gain such that the steady state
unbalanced response can be minimized.
Under controller order constraint when only
part of the precessiona modes are included
in the controller design, the spillover from
the remaining residual modes can be
evaluated for system stability.

Keywords: critical speeds, precessional
modes, spillover stabilization,
optimal controller design

One of the magor challenges in
structural control is to apply successfully and
confidently the control law derived from a
reduced-order model to the engineering
system of much higher order. Structura
control systems usualy require a large
number of vibration modes to describe its
dynamics, but the controller is implemented
only for a few vibration modes, often termed
primary modes. It is known that spillover—
the observation spillover that entals the
contamination of sensor output through the



presence of residual mode dynamics and the
control spillover in which the residual modes
are excited by feedback control—are inherent
in controller design of reduced-order model.

A recent analytical study (Yang and
Sheu, 1999) showed that the unbalanced
response of a spinning shaft can be written
analytically by a finite number of
precessional modes and the corresponding
generalized coordinates when A>1/2 .
Because the number of critical speeds and the
precessiona modes are finite, all can be
included in the controller design. Spillover
instability due to residua modes often seen
in vibration control of flexible systems can
then be prevented. However, the controller
based on a full order model may often be
difficult, if not impossible, to redlize in
practice. This project aims at evauating the
spillover, if any, of a system under controller
order constraint where only part of the
precessional modes within a desired
operation range can be considered. The
design of a spillover stabilizable controller is
necessary such that the steady state
unbalanced response within the operation
range can be minimized.

Consider of a spinning circular shaft
modeled by a Rayleigh beam with rotary
inertia and gyroscopic effects as shown in
Fig. 1.The EOM of a spinning shaft under
control input can be rewritten analytically in
amatrix form by

[MI{&7)} + ([D] +iQIG]{€&7)} +[K {a(7)} 0
=[B(IHF(D} +H{N(@)},

where the generalized matrices [M], [D], and
[K] are the diagonal, symmetric, positive
definite mass, damping, and dtiffness
matrices  with  dimension n, xn,
respectively. [G] is the gyroscopic matrix of
same dimension. [B({,)] is the control
influence matrix, {f(t)} is the control input
vector, and {N(1)} is the unbalanced force
Vector.

For a spinning shaft under velocity
feedback as the control force to suppress the

unbalanced vibration with r-measurement at
(s, the control input becomes

{f(D)} = -{dl[C({ )N &)} )

where [C(C,)]
matrix,

is the sensor distribution

[C({I=[9 ()], | =LK ,n, andm=1K ,r
3)

and [g] is an nxr constant gain matrix.
Therefore, the closed loop system becomes

[MI{&7)} + ([D] +[B({)IIICE)] + @)

IQ[GI{&7)} + [KKa(r)} ={N(7)}.
In the case of noncollocated sensor/actuator,
[B(C)] and [C(C:)] may not necessarily
be in the same column space so that the
closed loop system is no longer guaranteed
stable. The control-induced damping matrix
can then be written into a symmetric matrix

[D.]= %{[B(Za)][g][c(is)] +((BEIGICEIN '}
()

and a skew symmetric matrix

[G.]= %{[B(Za)][Q][C(Zs)] ~((BEIIICEIN}

(6)
that represent the damping and the
gyroscopic effect from feedback, respectively.
The closed loop system becomes

[MH{&D} +([D]+[D ] +[G I +IQCIIKDN} (7
+[KNa(n)} ={N(@)}.

By the generalized Kelvin-Tait-Chetaev
theorem (Yang, 1993), the system is
asymptotically stable if ([D1+[D.]) s
positive definite, independent of [G] or [G].

The steady state unbalanced response
U(¢, 1) can be obtained explicitly as

U1 =[®@Q1'{a@)} =V @Q)e“™, (8

where |U ()| isthe vibration amplitude, and

0 is the phase lag induced by feedback
control. The controller design is to



determine the optimal sensor location (s,

actuator location €., and feedback gan [(]
such that the steady state unbalanced
vibration can be minimized.

The measure of vibration suppression
performance can be evaluated by the
integrating the steady state vibration

amplitude |U ()| over the shaft length

W@, L) = [VQ R g

The performance index depends on the
spinning  speed (Q), the location of

sensor/actuator (Zs, Za), and the feedback
gan ([g]). For agiven spinning speed, the

optimal  sensor/actuator location  (¢s C5)
and feedback gain ([9”]1) can be obtained

by the optimization problem

ZIE]:PQ] W(QyZS!Zal[g])i (10)

subject to the constraints

(1) stability criteria ([D] +[D.]) >0,

(2) admissibleregion 0<{ <1, 0<{, <1
(3) saturationlimit 0<g; <1.

The optimal sensor/actuator location
will change with the spinning speed because
of the change of the anti-node(s) location.
The above optimal control for a spinning
shaft is developed for either a part or a full
order model where the fisrt or al critica
speeds and precassional modes are included
in the controller design. The precessional
modes employed in the in the reduced model
for the controller design are termed the
primary modes and the truncated modes are
termed residual modes. If only part of the
precessionad  modes within a desired
operation range are included in the controller
design, then the spillover effects of residual
modes will have to be evaluated. Equation (7)
can be decomposed into

M H{& (7)} +([D,]+[B({IIOIIC,({)]
+iQ[G {&, (1)} +[K J{q,(0)} ={N (1)},
and

(11)

[M {& ()} +([D,1+[B, ({IGIIC, ()] (12)
+iQ[G I{& (1)} +[K {a, (1)} ={N, (1)}
where the subscripts p and r refer to the
primary and residual mode, respectively. The
number of primary and residua modes are
n,and n  saisfying n,+n =n, The
controller design is based on Eg. (11) of
reduced-order model in terms of primary
modes, but it isto be implemented on the full
order system with residual modes as well.
In such case, the constraint in Eg. (10) has to
be modified by

([D']1+[D;]) >0, stability criteria  (13)

where

[D:] =%{[Bf (CIGC (§I]+
([B (£IGIC, (¢} (14)

represents the control-induced damping
matrix for the full-order closed loop system
must be semi-definite.

Consider a spinning shaft of slenderness
ratio | = 7 with linear eccentricity distribution
€(¢) =€,(1+<) | and the boundary condition
is hinged-hinged. There will be only four
critical speeds (n, =4) a Q, =10.13 ,

4418, 120.12 and 358.23 with the
corresponding precessional modes

@,(¢) =sin(ng) | n=1K ,4 For systems
with damping ratio & =&, =0.1% | the
amplitude response {q(1)) are plotted in Fig.
2. The objective of controller design is to
place one pair of sensor/actuator in optimal

location (Cs, Ca) with a feedback gain (g)
such that the vibration amplitude can be
minimized.

If subject to controller order and desired
operation range restrictions, only the first two
precessiona modes is considered in the
controller design n, =2 At the same time,
however, the design should prevent the
spillover of the remaining modes and
guarantee  stability. For systems in
noncollocated sensor/actuator configuration,

the optima sensor location (s, actuator



location Ca, and feedback gain (g) are
shown in Fig. 3. The first mode is dominant
a lower speed, so that the optima
sensor/actuator locations become collocated
instead, and they are a the anti-node
(s=C,=05 When the spinning
speed Q>Q,, | the magnitude of q
approaches a constant while the influence of
0. becoming more apparent as shown in Fig.
2. Thus the sensor and actuator locations
become noncollocated and they bifurcate into
two branches. Their relative distance is
determined by the  control-induced
gyroscopic effect in Eq. (6). The farther
apart the sensor and actuator, the more
gyroscopic effect induced. But it is also
restricted by the stability constraint in Eq.
(13). That is why they are kept at a constant
distance in order to guarantee stability as
shown in Fig. 3.

Figure 4 shows the optimal sensor/actuator

locations ({s» €) and the feedback ganin
noncollocated design when al the
precessona modes are included (n, =4).

The unbalanced responses of the optimal
design under noncollocated configurations
from reduced (n,=2) and full order

controller (n, = 4)and are compared in Fig.

5. The reduced-order controller is effective
for the first two modes, but it is less effective
to for vibration suppression of the residual
modes because only the precessiona modes
within the operation range are considered in
the design. Nevertheless, the system remains
stable.

It has been shown that a spinning shaft
only has finite number of critical speeds and
precessiona modes when the whirl ratio
A>1/2. Vibration control of steady state
unbalanced response by optimal
sensor/actuator location and feedback gain
are studied analytically in this project. Due to
controller order constraint, one can include
part of precessional modes in the controller
design and then guarantee the spillover
stabilization, if any, of the remaining residual
modes.

In noncollocated configuration, the
optimal sensor and actuator locations are
affected not only by the spinning speed but
also by the control-induced gyroscopic effect.
When operating near one of the critical
speeds, the optima locations become
collocated at the anti-node of that critica
mode. At the other speeds, the optimal
locations are, as expected, noncollocated, and
they are kept at a constant distance to ensure
system stability. The actuator location is
more sensitive than the sensor location to
spinning speed and hence to system
performance. Under stability constraint, the
sensor and actuator locations are placed in a
way such that they remain in-phase and the
control input is aways constructive for
vibration suppression.
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Fig. 1 Schematic diagram of a spinning shaft
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