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Abstract

SRR AP

This paper deals with one-dimensional
axisymmetric quasi-static coupled
thermoelastic problems with time-dependent
boundary conditions. Laplace transform and
finite difference methods are used to analyze
the problems. Using the Laplace transform
with respect to time, the general solutions of
the governing equations are obtained in
transform domain. The solution is obtained
by using the matrix similarity transformation
and inverse Laplace transform. We obtain
solutions for the temperature and thermal
deformation distributions for a transient and
steady state.

Laplace  transform, finite
difference  methods,
similarity transformation

Keywords:
matrix

~ ~ INTRODUCTION

There have been a lot of papers dealing
with thermoelasticity problems. Takeuti and
Furukawa [1] discussed the thermal shock
problems in a plate, they include the inertia
and thermoelastic coupling terms in the
governing equation and obtained the exact
solution for thermal shock problem in the
plate. Sherief and Anwar [2] discussed the
problem of an annular infinitely long elastic
circular cylinder whose inner and outer
surfaces are subject to known temperature
and are traction free. Yang and Chen [3]
discussed the transient response of
one-dimensional quasi-static coupled
thermoelasticity problems of an infinitely
long annular cylinder composed of two
different materials.

Chen et al. [4-7] presented a new
numerical  technique—hybrid  numerical
method for the problem of a transient linear
heat conduction system. He applied the

Laplace  transform to  remove the
time-dependence  from the  governing
equation and boundary conditions, and

solved the transformed equations with the
finite element and finite difference method.
Finally the transformed temperature was
inverted by numerical inversion of the
Laplace transform. It proved that the method
can accurately determine the stable solutions
at a specific time.

The present work deals with
one-dimensional quasi-static coupled
thermoelastic problems of an infinitely long
multilayered hollow cylinder composed of
multilayered different ceramic-metal
materials and boundary conditions.



= ~ Formulation

The layered cylindrical shell to be
analyed is shown in Fig. 1. The transient heat

conduction equation for the ith layer in
dimensional form can be Written as
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If the body forces are absent, the equation of

equilibrium for a cylinder along the radial
direction can be written as
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The stress-displacement relations are
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Let the boundary surfaces of composite
cylinder be traction free and subjected to
time-dependent or constant temperatures.
The initial and boundary conditions are

U=U=0=0=0 at ¢ =0

of(r,t):O,(91—(9021‘1 at R

Case 1
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Case 2
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At the interface between two adjacent
layers, the following matching conditions
must be satisfied:

U(r,0)=U,,,(r,0) s0,,(r,0) =0, (1)
qi = qi+1 ? @i (l",t) :@H—l (l",t)

The governing equations and
stress-displacement  relations have the

nondimensional form. Taking the Laplace
transform and central difference for
equations, we obtain the following equation
in matrix

{[m]-strf{T )+ s(v i} = {6

[RIT |+ 101, } = ) (6)

Substituting equation (5) into (6), we have

{4117 = {7 )
Since the ( N xN ) matrix [A] is a
nonsingular real matrix, the matrix [A]
possesses a set of N linearly independent
hence the matrix [A] s
diagonalizable. Equation can be rewritten as
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From equation (8), the following solutions
can be obtained immediately.
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By applying the inverse Laplace
transform to equation (9), we get the solution
T;. After we have obtained 77, then we can

use following equations (10) and (11) to
obtain the solutions 7, and u,

(r}=1pPlr}
u,}=101'171- 0] '[R]T}

Substituting 7, and u,

(10)

(an

into equations,

we obtain the radial and circumferential
stresses.



Numerical Result and Discussions

In this study, we present some numerical
results for the temperature distributions in a
long multilayered composite hollow cylinder,
subjected to the considered boundary
conditions and the resulting displacement
and thermal stresses (Fig 2-12).

For an infinitely long annular
multilayered cylinder, the geometry and
material quantities of the cylinder are shown
in Table 1. The inner and outer radius of the
cylinder are assumed to be 1.0 and 4.5
respectively. The case 1 boundary conditions
at inner and outer surfaces are assumed to be
f(t) and adiabatic respectively. The case 2
boundary conditions at inner and outer
surfaces are assumed to be f{z) and
convective respectively. Each layer is
assumed to have a different thickness (in the
case of three layers, Ah =1., Ah, =1. and

Ah, =1.5),
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layer 1 layer 2 |layer 3
Titanium | 47,0, (Steel(1025)

E =E, |108E9 390E9 |207E9

k.=k, |20 6 17

vV,=V, (0.3 0.23 0.3

a, =a, |11E-6 8E-6 11E-6

P 4 3.99 7.8

C, 0.4 1.25 0.48

Table 1. The geometry and material
constants of an infinitely long multilayered
cylinder (R, /R, =4.5, h =200,

out

®, =T, =298 K)

Fig. 1. Physical model and system coordinates
Multilayered infinitely long cylinder
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Fig. 2. Temperature and pressure relation in
inner boundary (quality 90%)
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Fig. 4. Pressure distribution with time in
inner boundary
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Fig. 5. Temperature usuioution along
radial direction for adiabatic case
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Fig. 6. Radial displacement distribution
along radial direction for adiabatic case
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Fig. 7. Radial stress distribution along radial

direction for adiabatic case
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Fig. 8. Circumferential stress along radial
direction for adiabatic case
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Fig. 9. Temperature distribution along
radial direction for convective case
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Fig. 10. Radial displacement distribution
along radial direction for convective case
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Fig. 11. Radial stress distribution along
radial direction for convective case
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Fig. 12. Circumferential stress along radial
direction for convective case



