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Abstract
This  paper deals
quasistatic-coupled
elastic problems for time-dependent boundary

three-dimensional
axisymmetric thermo-
condition. The water vapor temperature and
pressure relation assumed for the inner
boundary. The water vapor temperature and
pressure data were obtained from a
thermodynamic steam table. Laplace transform
and finite difference methods are used to
analyze problems. The solution is obtained by
using the matrix similarity transformation and
inverse Laplace transform. We obtain solutions
for the temperature and thermal deformation
distributions in a transient and steady state.

Keywords: Multilayered - Laplace transform
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Stasynk et al. [1] have studied the
steady-state thermal stress of hollow cylinders
considering the effect of variation of thermal
conductivity as a function of temperature.
They concluded that the effect of thermal
conductivity on the temperature and stresses is
slight for small values of internal heat flow.
However, for large heat flow, the difference in
temperature and stresses between
temperature-dependent  and
thermal conductivity can be as much as 20%.
Vollbrecht [2] has analyzed the stresses in both
cylindrical and spherical walls subjected to
internal pressure and stationary heat flow.
Kandil [3] has studied the effect of steady-state

temperature

independent

and pressure gradient on
compound cylinders fitted together by shrink
fit. The finite element method has been used
by Sinha [4] to analyze the thermal stresses
and temperature distribution in a hollow thick
cylinder subjected to a steady-state heat load
in the radial direction. Naga [5] has presented
the stress analysis and the optimization of both
thick-walled impermeable and permeable
cylinders under the combined effect of

steady-state temperature and pressure gradient.

2. Formulation
We now consider a finitely long annular
cylinder made of different length as shown in
Figure 1. The inner and outer radii of the



cylinder are denoted by » and

respectively. The hollow cylinder is assumed
to be heated suddenly at the inner and outer

surface under temperatures f and g

respectively.

The transient heat conduction equation for
the axisymmetric cylinder is
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If the body forces are absent, the equation
of equilibrium for a cylinder along the radial
direction can be written as
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If the body forces are absent, the
equation of equilibrium for a cylinder along
the z-direction can be written as
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The stress-displacement relations are
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Let the boundary surface of hollow
cylinder be subject to time-dependent or
constant boundary temperatures and pressures,
the boundary conditions are

S(rhan=pt) > ©,-0,=f0) r'=R
o.(r,z,t)=0 ’ 0,-0,=/ at =R,
o, (r,z,t)=0 > 0,-0, = f; at z =2,
o.(r,z,t)=0 > 0,-0,=f, at 7z =2

At the interface between two adjacent layers,
the following matching conditions must be
satisfied:

U(ryt)=U,, (1) r =R
o (r,0)=0,.,(r,0) =R
a;=q; r'=R
Q,(r,1)=0,,(r.t) r'=R

i=23,...,m-1

The initial conditions are ,_;_g_g_, att=0

Substituting the non-dimensional quantities

into the governing equations (1)-(3),



stress-displacement relations (4)-(7), we obtain
the following nondimensional equations:
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The nondimensional boundary and
interface conditions can be written as:

1. Boundary condition:

o, (r,z,t)= 20 ’ Li=10)/0, at r=4
B9,

o, (r.2.)=0 » 1,-pje, A ren
0—7([’2’[):0 ? Tzl =f3/®0 at Z=2z
o.(rzn=0 > 1,58, & =z
2. Interface conditions:

w,(r,z,t) =u,,(r,z,t) I'=1r,
0,(r.z.0)=0,,(rz1) r=r,
i =4ix r=r,,
T(r,z,0) =T, (r,z,0) I'=1Ipy

i=23,....m—1layer

Applying central difference scheme and
Laplace transformation in equations (8)-(14),
using boundary conditions into equations, we
obtain the following equation in matrix form

{1 ST, 4+ (B, |+ s[C M, - 101 - [R] = [M] (15)

(DT} +1E N, ;) +1FNu, ;) =0 (16)

(GHT ) +Lau, ) +120u,,} =0 (17)
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Substituting equations (16) and (17) into
equation (15), we have

w117} = {7} (18)

where

w]=1{ {B1'[C1-E) [FI{HIEY [F1- L1} {G]-[HIE) '[D1}
+ {81 +[EY'(D1} 1B [4]

[F]={ {8 '1C1-1ET TP HIEY [F1- (L1 {G1-[HIE) (D}
+{B1" +[E1'[DY} [ [BI{IM]1+[01+[R]}

The following solutions are obtained
immediately from equation (18).

3. Numerical Results and Discussions

In this section, we present some

numerical results of the temperature
distribution in a finitely long hollow cylinder,
and displacement and thermal stresses. To
illustrate the foregoing analysis, we performed
numerical calculations for multilayered hollow
cylinder under an axisymmetric heating at the
boundary surface. For a convenient solution
to the example, consider in this paper, use
isotropic material to analyze problems. For a
finitely long hollow cylinder, the geometry and
the material quantities of the cylinder are
shown in Table 1. The diameter over length are

assumed to be 3.2, respectively. The inner and

outer temperatures are assumed to be () and

0 respectively. The inner and outer pressures

are assumed to be ,;) and O respectively.

Temperatures at both ends are also assumed to



be 0 respectively. The both ends are traction
free.

Figure 2 shows water vapor temperature
and pressure relation assumed for the inner
boundary. The water vapor temperature and
pressure data were obtained from a
thermodynamic steam table [6]. Figure 3
shows the temperature distributions with time.
Figure 4 shows the pressure distributions with
time. Figure 5 shows that the temperature
distribution along radial direction and
z-direction of multilayered hollow cylinder at
t=3, respectively. The results show that when
the temperature distribution in transient.
Figure 6 shows the wvariation of radial
displacement along radial and z directions for
multilayered hollow cylinders at t=3,
respectively. Figure 7 shows the z-direction
displacement varying in r and z directions of
multilayered  hollow cylinder at t=3,
respectively. The z-direction displacement
changes with respect to time. Figure 8 shows
the radial thermal stress distribution o, along
the radial and z-directions at t=3, respectively.
Figures 9 shows the circumferential stress o,
along radial and z-directions of multilayered
hollow cylinder at t=3, respectively. Figure 10
shows that the stress distribution o, along
radial and z-directions of multilayered hollow
cylinder at t=3, respectively. Figure 11
shows that the distribution of shear stress r,
of hollow cylinders at t=3, respectively. The
results show that this shear stress is very small
as compared to other thermal stress

components.

4. Conclusions
In this paper, we discussed completely the
thermoelasticity problem of multilayered
whose boundaries are

hollow cylinder

subjected to time-dependent temperatures and
pressures. The three-dimensional quasi-static
axisymmetric coupled thermoelastic problem
of multilayered hollow cylinder was discussed.

In the case of finitely long cylinder,
numerical results of multilayered hollow
cylinder at transient were calculated. The finite
difference and Laplace transform methods
were employed to obtain the numerical results.
The temperature, displacement and thermal
stress distributions were obtained which can be
applied to mechanical part in precision
measurement or design useful structures
applications. The proposed method may be
readily extended to solve a time wide range of
physical engineering problems.
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Nomenclature

non-dimensional radial coordinate

,
2 Lame’s constant

P density

c, specific heat

o, reference temperature

L z-direction length

Vs v, Poisson’s ratio

I inner and outer surrounding temperatures
0,7 dimensional and non-dimensional temperature
U.»u dimensional and non-dimensional displacement
T,t dimensional and non-dimensional time

r',0,Z cylindrical coordinate

k,sk,ok. thermal conductivity

Apsapsas linear thermal expansion coefficient
E.sEpsE. Young’s modulus

oraaly ot dimensional stress

050,50, non-dimensional stress

ey,
S e,

Figure 1. Physical model and system coordinates
of multilayered hollow cylinder
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Figure 2. Temperature and pressure relation in inner

boundary (quality 90%)[6]
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Figure 3. Temperature distribution with time in inner

boundary
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Figure 4. Pressure distribution with time in inner

boundary

Figure 5. Temperature distribution along radial and z

directions at t=3

Figure 6. r-displacement along radial and z directions
at t=3

Figure 7. z-displacement along radial and z directions

at t=3

Figure 8. Radial stress along radial and z directions
at t=3
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Figure 9. Circumferential stress along radial and z

directions at t=3

Figure 10. Stress distribution O, along radial and z

directions at t=3
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Figure 11. Shear stress distribution ¢ along radial and

z directions at t=3

Table 1.

The geometry and material constants of a finitely long

hollow cylinder (ro/”i =32, z,/z = 32)

Layer 1 Layer 2
E,=E~E. (LX) s3E6 S0E6
= = We
k=ky=k, (Zar) 3 10
A, =0y=0, () 4E-6 2E-6
V=V, 0.2 0.4
V.=V, 0.2 0.4
V.=V, 0.2 0.4
G, () 58E6 50E6
p (25 0.095 0.085
Co(2) 0.3 0.2
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