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摘要 

   本文主要是分析一異向性材料所組成的三維

熱管在受熱與壓力耦合變化下，因壁內外邊界條件的

差異而所產生的熱變形問題。而我們探討可分為內邊

界和外邊界這二個部分，我們在內邊界部分管內開始

加熱時利用熱力學蒸汽表模擬出蒸氣溫度和壓力的

關係式當成邊界條件，溫度和壓力相互影響且隨時間

變化下其暫態熱應力的分佈情形。而在外邊界部分我

們假設為不同狀態而我們將使用有限差分法與拉氏

轉換來處理此類問題。 

 
關鍵字：熱管、熱變形、拉氏轉換 

 
Abstract  

This paper deals three-dimensional 
axisymmetric quasistatic-coupled thermo- 
elastic problems for time-dependent boundary 
condition. The water vapor temperature and 
pressure relation assumed for the inner 
boundary. The water vapor temperature and 
pressure data were obtained from a 
thermodynamic steam table. Laplace transform 
and finite difference methods are used to 
analyze problems. The solution is obtained by 
using the matrix similarity transformation and 
inverse Laplace transform. We obtain solutions 
for the temperature and thermal deformation 
distributions in a transient and steady state. 

 
Keywords: Multilayered、Laplace transform 

 
1. Introduction 

Stasynk et al. [1] have studied the 
steady-state thermal stress of hollow cylinders 
considering the effect of variation of thermal 
conductivity as a function of temperature. 
They concluded that the effect of thermal 
conductivity on the temperature and stresses is 
slight for small values of internal heat flow. 
However, for large heat flow, the difference in 
temperature and stresses between 
temperature-dependent and independent 
thermal conductivity can be as much as 20%. 
Vollbrecht [2] has analyzed the stresses in both 
cylindrical and spherical walls subjected to 
internal pressure and stationary heat flow. 
Kandil [3] has studied the effect of steady-state 
temperature and pressure gradient on 
compound cylinders fitted together by shrink 
fit. The finite element method has been used 
by Sinha [4] to analyze the thermal stresses 
and temperature distribution in a hollow thick 
cylinder subjected to a steady-state heat load 
in the radial direction. Naga [5] has presented 
the stress analysis and the optimization of both 
thick-walled impermeable and permeable 
cylinders under the combined effect of 
steady-state temperature and pressure gradient. 

 
2. Formulation 

We now consider a finitely long annular 
cylinder made of different length as shown in 
Figure 1. The inner and outer radii of the 
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cylinder are denoted by r  and  

respectively. The hollow cylinder is assumed 
to be heated suddenly at the inner and outer 

surface under temperatures  and  

respectively. 

i r0

f1 f 2

   The transient heat conduction equation for 
the axisymmetric cylinder is 
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   If the body forces are absent, the equation 
of equilibrium for a cylinder along the radial 
direction can be written as 
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     If the body forces are absent, the 
equation of equilibrium for a cylinder along 
the z-direction can be written as 
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The stress-displacement relations are 
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    Let the boundary surface of hollow 
cylinder be subject to time-dependent or 
constant boundary temperatures and pressures, 
the boundary conditions are  

)   ,   Θ−Θ   at   r R= 1

σ r r z t( , , ) = 0
202 f=

*

*   ,   Θ−Θ    at    r R* = 0

σ z r z t( , , ) = 0
3 0 3

*   ,   fΘ −Θ = z Z* =

σ z r z t( , , ) = 0
404 f=

   at   
0

  

*   ,   Θ−Θ    at    z Z* = 1

At the interface between two adjacent layers, 
the following matching conditions must be 
satisfied: 

U r t U r ti i( , ) ( , )= +1
  r Ri

* =

σ σr i r ir t r t* ( , ) ( , )= +1
  r Ri

* =

q qi i= +1
  r Ri

* =

Θ Θi ir t r t( , ) ( , )= +1
  r Ri

* =

i m= −2 3 1, , ... ,  

The initial conditions are 0=Θ=Θ== &&UU  at t=0 

Substituting the non-dimensional quantities 
into the governing equations (1)-(3), 
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stress-displacement relations (4)-(7), we obtain 
the following nondimensional equations: 
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     The nondimensional boundary and 
interface conditions can be written as: 

1. Boundary condition: 
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     Applying central difference scheme and 
Laplace transformation in equations (8)-(14), 
using boundary conditions into equations, we 
obtain the following equation in matrix form 
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     Substituting equations (16) and (17) into 
equation (15), we have  
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  The following solutions are obtained 
immediately from equation (18). 

 

3. Numerical Results and Discussions 

    In this section, we present some 
numerical results of the temperature 
distribution in a finitely long hollow cylinder, 
and displacement and thermal stresses. To 
illustrate the foregoing analysis, we performed 
numerical calculations for multilayered hollow 
cylinder under an axisymmetric heating at the 
boundary surface.  For a convenient solution 
to the example, consider in this paper, use 
isotropic material to analyze problems. For a 
finitely long hollow cylinder, the geometry and 
the material quantities of the cylinder are 
shown in Table 1. The diameter over length are 
assumed to be 3.2, respectively. The inner and 

outer temperatures are assumed to be  and 

0 respectively.  The inner and outer pressures 

are assumed to be  and 0 respectively. 

Temperatures at both ends are also assumed to 

)(tf

)(tp

[][][][][][][ MRQuCsuBsTIsA ijzijrij =−−++−
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be 0 respectively. The both ends are traction 
free. 

Figure 2 shows water vapor temperature 
and pressure relation assumed for the inner 
boundary. The water vapor temperature and 
pressure data were obtained from a 
thermodynamic steam table [6]. Figure 3 
shows the temperature distributions with time. 
Figure 4 shows the pressure distributions with 
time. Figure 5 shows that the temperature 
distribution along radial direction and 
z-direction of multilayered hollow cylinder at 
t=3, respectively. The results show that when 
the temperature distribution in transient. 
Figure 6 shows the variation of radial 
displacement along radial and z directions for 
multilayered hollow cylinders at t=3, 
respectively. Figure 7 shows the z-direction 
displacement varying in r and z directions of 
multilayered hollow cylinder at t=3, 
respectively. The z-direction displacement 
changes with respect to time. Figure 8 shows 
the radial thermal stress distribution σ r  along 
the radial and z-directions at t=3, respectively. 
Figures 9 shows the circumferential stress σθ  
along radial and z-directions of multilayered 
hollow cylinder at t=3, respectively. Figure 10 
shows that the stress distribution σ z  along 
radial and z-directions of multilayered hollow 
cylinder at t=3, respectively.  Figure 11 
shows that the distribution of shear stress τ rz  
of hollow cylinders at t=3, respectively. The 
results show that this shear stress is very small 
as compared to other thermal stress 
components. 
 

4. Conclusions 
In this paper, we discussed completely the 

thermoelasticity problem of multilayered 
hollow cylinder whose boundaries are 

subjected to time-dependent temperatures and 
pressures. The three-dimensional quasi-static 
axisymmetric coupled thermoelastic problem 
of multilayered hollow cylinder was discussed. 

In the case of finitely long cylinder, 
numerical results of multilayered hollow 
cylinder at transient were calculated. The finite 
difference and Laplace transform methods 
were employed to obtain the numerical results. 
The temperature, displacement and thermal 
stress distributions were obtained which can be 
applied to mechanical part in precision 
measurement or design useful structures 
applications. The proposed method may be 
readily extended to solve a time wide range of 
physical engineering problems. 
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Nomenclature 
r     non-dimensional radial coordinate 
λ  Lame’s constant  
ρ     density 
C v    specific heat  

Θ0        reference temperature 
L z-direction length 
νθr

, ν θr
 Poisson’s ratio 

21, ff  inner and outer surrounding temperatures 
Θ ,T  dimensional and non-dimensional temperature 
U r

,u  dimensional and non-dimensional displacement 
τ , t      dimensional and non-dimensional time 
r ∗ ,θ , z   cylindrical coordinate 
kr

, kθ
, k    thermal conductivity 

z

α r ,αθ ,α z   linear thermal expansion coefficient 
Er , E ,θ Ez   Young’s modulus             
σ r
∗ , ,   dimensional stress  σθ

∗ σ z
∗

σ r , ,   non-dimensional stress σθ σ z

 

 
 

 
Figure 1. Physical model and system coordinates  
        of multilayered hollow cylinder 
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Figure 2. Temperature and pressure relation in inner 
        boundary (quality 90%)[6] 
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Figure 4. Pressure distribution with time in inner  
        boundary 
 

 

Figure 5. Temperature distribution along radial and z  
        directions at t=3       
 

 

Figure 6. r-displacement along radial and z directions  
        at t=3       

 
Figure 7. z-displacement along radial and z directions 
        at t=3 

 
Figure 8. Radial stress along radial and z directions 
        at t=3       

 
Figure 9. Circumferential stress along radial and z 
        directions at t=3       

 

Figure 10. Stress distribution σ z  along radial and z  

         directions at t=3 
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Figure 11. Shear stress distribution  along radial and 
rzτ  

         z directions at t=3   
  

  
Table 1.  

The geometry and material constants of a finitely long 

hollow cylinder (
0 0 1i 3.2 , 3.2r r z z= = ) 

 
 
 

 Layer 1 Layer 2 

Er =Eθ=Ez (
2m

N ) 58E6 50E6 

kr=kθ=kz (
Km

Watt
⋅

) 22 10 

α r =αθ=α z  (
K
1 ) 4E-6 2E-6 

ν θr =  rθν 0.2 0.4 

νrz=ν zr  0.2 0.4 
ν θz =νθz  0.2 0.4 

Gzr (
2m

N ) 58E6 50E6 

ρ  (
3m

kg ) 0.095 0.085 

Cv (
Kkg

kJ
−

) 0.3 0.2 
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