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The faster computation on the elliptic curve cryptosystem
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In 1985, Miller and Koblitz
( : independently proposed a new public
P,R nP =R key cryptosystem, called éliptic curve

n cryptosystem (ECC), whose security is



based on the dliptic curve discrete
logarithm problem (ECDLP). The key
length of ECC is shorter than that of
other public key cryptosystems in the
same security strength, for instance, the
key length of ECC with 160 bits and the
key length of RSA or Diffie-Hellman
with 1024 bits have the same security
strength. Therefore, in the aspects of
storing the ability of the public key,
delivering the bandwidth had and
encrypting the data etc., the ECC all
occupies the bigger advantage. But for
the application of constrained system, it
still needs to be improved.

The basic operation in eliptic curve
cryptosystem is the computation of
scalar multiplication (nP) on the elliptic
curve with order n over afinite field.

Therefore, we present a
multiplication on a general an agorithm
which speeds scalar multiplication on a
genera elliptic curve by an estimated
4% to 7% over the best known genera
methods when using affine coordinates.
This is achieved by eliminating a field
multiplication when we compute 2P+Q
from given points P, Q on the curve.

We have applications to speed the
computation of cryptosystem and key
agreement protocol which base on the
Welil pairing.

Keywords dliptic curve cryptosystem,
éliptic curve discrete logarithm problem,
scalar multiplication, key agreement
protocol, Welil pairing.
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