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Controlling Chaos in a Symmetric Gyroscope

Hsien-Keng Chen

Abstract

In this paper, controlling chaos in a gyroscope has been studied. It has shown that one
can convert chaotic motion to a regular one. For this purpose, the feedback control, the
addition of constant motor torque, the addition periodic force, and adaptive control
algorithm (ACA) are used to control chaos. As a result, the chaotic system can be

controlled effectively.
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1. Introduction

Lorenz studied the strange changes in
the atmosphere at which is the first
example to research chaos in 1963[1].
During the past one and half decades, a
large number of studies have shown that
chaotic phenomena are observed in many
physical systems, possessing nonlinearity
[2,3]. It was also reported that the chaotic
motion occurred in many nonlinear
control system [4,5]. Several interesting
dynamic behaviors of the gyro have been
studied recently [6-8]. It has shown that
the system exhibited both regular and
chaotic motions.

The presence of chaotic behavior is
generic for suitable nonlinearities, ranges
of parameters and external forces, where
one wishes to avoid or control so as to
improve the performance of a dynamical
system. Sometimes chaos is useful, as in
mixing process or in heat transfer, often it
is unwanted or undesirable. Because of
chaotic motion is unpredictable in time

and the fracture character of the system

depends on its sensitivity to initial
conditions. Knowledge is valid in starting
for near initial conditions in phase space
as distance between the two points
corresponding to the initial conditions.
Due to unpredictability this knowledge is
lost in time. Clearly, the ability to control
chaos, that is to convert chaotic
oscillations into desired regular ones with
periodic time dependence, would be
beneficial in working with a particular
system. It is thus of great practical
importance to develop suitable control
methods. Very recently much interest has
been focused on this type of problem —
controlling chaos [9-12]. The aim of this
paper is to control chaotic motion of the
gyroscope. For this purpose, many control
methods; which are the addition of
periodic force, simple feedback control,
the addition of constant motor force, and
adaptive control; are used to control
chaos. As a result, the chaotic system can

be controlled.




Controlling Chaos in a Symmetric Gyroscope : Hsien-Keng Chen 3

2. Liapunov Exponent

The Liapunov exponent plays a major
role when the control methods were
determined, in this paper. The Liapunov
exponent is the powerful index which
clould be distinguished regular motion
from chaotic motion. The Liapunov
exponent may be used to measure the
sensitive dependence upon initial
conditions. It is an index for chaotic
behavior. Different solutions of dynamical
system, such as fixed points, periodic
motions, quasi-periodic motion, and
chaotic motion can be distinguished from
it. If two trajectories start close to one
another in phase space, they will move
exponentially away from each other for
small times on the average [13]. Thus, if
d is a measure of initial distance between
the two starting pointé, the distance is
d(t)= dy 2M . The symbol A is called
Liapunov exponent. The divergence of
chaotic orbits can only be locally
exponential, because if the system is

bounded, as most physical experiments

are, d(t) can’t grow to infinity. A measure
of divergence of orbit is that the
exponential grown at many points along a
trajectory has to be averaged. When d(t) is
too large, a new ‘nearby’ trajectory dy(t) is
defined. The Liapunov exponent can be

expressed as:

N
N B TV
ty — g kel do(tk _1)

1)
The signs of the Liapunov exponents
provide a qualitative picture of a system
dynamics. The criterion is
A > 0 (chaotic) 2

A <0 (regular motion) 3)

3. Controlling Chaos by Several
Methods

In this section, several methods are
applied to study the controlling chaos. The
regular and chaotic motions could be
distinguished from the Liapunov
exponents. If one of the valves of
Liapunov exponents is greater than zero, it

is chaotic motion, otherwise regular

motion.
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3.1 Suppression of Chaos by
Simple Feedback Control

State feedback control is one of the
simple methods for the control system,
this control method is often used to design
the controller. In this subsection, it is used
to control the chaotic motion. The

governing equation of motion of a

symmetric dissipative gyro mounted on a
vibrating base can be written as equation
(4). Where I, and I; are the polar and
equatorial moments of inertia of the
symmetric gyro, respectively, Mg is the
gravity force, / is the amplitude of the
external excitation disturbance, and ® is

the frequency of the external excitation

disturbance, m is the mass of the damper,
and k is the spring constant, p is a positive
constant. The detailed explanation is
referred to ref.[8]. The feedback control
law is assumed to be

U= -KXx,, 5)
which is added into eq. (4). It shows that
the maximal Liapunov exponents can be
less than O when the value of K is large

sufficiently. Then the chaotic motion

X =X,

. [3; (1-cosx,)? N [(Mg/ + mgp) + mgx, +(M+m)g/ sin wt]sinx,

X, =—

T Lmex+p)?’T sin’x, [1, +m(x; +p)’]

X, =X,

’ R 1-cosx,)’ k

X, = ¢ s ( — L) (x4 +p) +g(1—cosx,) ——X, +(X; +p)Xi — 2¢cx,
(I, +m(x; +p)7] sm” x, m

4)

disappears, and the regularity returns. The

maximal Liapunov exponents versus the

values of K are shown in Fig 1(a).

3.2 Controlling of Chaos by the
Addition of Constant Motor
Torque
Interestingly, one can even add just a

constant term to control or quench the

chaotic attractor to a desired periodic one

in typical nonlinear non-autonomous
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system. It ensures effective controlling in
a very simple way. In order to understand
this simple controlling approach in a better
way, the system (4) will be integrated
numerically.

In the absence of the constant motor
torque, the system exhibits chaotic
behavior under the following parameter
conditions:I;=1.0, k=100, /=0.1 /=5.0,
M=0.5, m=0.1, p=0.1, ; =100, ®=2.0.

Examining the effect of the constant
motor torque, the added motor torque M;
is assumed to be in eq. (4). Now if we
consider the effect of the constant motor
torque M, by increasing it from zero
upwards, the chaotic behavior is then
altered. Spectral analysis of the Liapunov
exponents has proven to be the most
useful dynamical diagnostic tool for
examining chaotic motions. Fig. 1(b)
shows the maximal Liapunov exponents.
It is clear that the system returns to regular
motion, when the constant motor torque

M, is presented in certain interval.

3.3 Controlling of Chaos by the
Addition of Periodic Force
One can control system dynamics by

addition of an external periodic force in

the chaotic state. For our propose, the
added periodic force, asin(®t), is assumed
to be presented in eq. (4b). When the
added periodic force is given, the system

(4) then can be investigated by

numerically solving, with the remaining

parameters fixed. To examine the change

in the dynamics of the system as a

function of @ for fixed a=2, the maximal

Liapunov exponents are estimated

numerically. An interesting phenomenon

is found that when 1.1 £ ® < 1.3, the

maximal Liapunov exponents A; < 0.

3.4. Controlling chaos by the
Adaptive Control Algorithm
Recently, Huberman and Lumer have

suggested a simple and effective adaptive

control algorithm (for one-dimensional
systems), which utilizes an error signal
proportional to the difference between the

goal output and actual output of the
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system. The error signal governs the
change of parameters of the system, which
readjust so as to reduce the error to zero.
The schematic diagram of an adaptive
control system is depicted in Figure 2.
This method can be explained briefly: The
system motion is set back to a desired
state X by adding dynamics on the
control parameter P through the evolution
equation,

P=¢G(X-X,), (6)
where the function G is proportional to the
difference between X and the actual
output X, and € indicates the stiffness of
the control. The function G could be either
linear or nonlinear. In order to convert the
dynamics of a symmetric heavy gyroscope
[6] from chaotic motion to a desired fixed
point (Xys, Xp). The governing equation
of motion of a symmetric heavy gyroscope
is written as

X, =X,

2
., (-cosx))
X, =0 ———5———CX, @)
sin” X,

+Bsinx, +fsinwtsinx,

the detailed explanation is referred to
ref.[6]. The chosen parameter f is
perturbed as

f=e(X-X,), (8)
where the control function G is assumed
to be linear in (X;-Xis) to start with. In
this study, the fixed point is (0, 0), the
stiffness of the control €=0.1, X;,=0 is the
output of goal. When X approaches to X,
then G((X-X;s) tends to zero, i.e.,
G(0)=0. When t 2 1000, the control is
switched on, as t 2 2050 the parameter f
tends to 26.9 shown as Fig.3 (b), and the
system evolves to reach the fixed point
(0,0). Fig. 3(a) shows the difference
between X; with X5 (0). It is clear that
the desired fixed point (0, 0) can reach by

adaptive control algorithm.

4. Conclusions

Several control methods have been
used to control the chaotic motion of the
gyro. Some interesting phenomena have
been found. An addition of sinusoidal

force can eliminate chaos in a dynamical
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system. Regular motion is also recovered
from chaotic state for appropriate
feedback control law. A simple and high
effective method, the addition of constant
motor torque, has been used to suppress
the chaotic motion. Besides it has shown
that ACA can convert chaotic oscillations

into desired regular goal.
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Fig.1 (a)Maximal Liapunov exponent against the parameter K; (b) Maximal Liapunov
exponent against the parameter M,; (c) Maximal Liapunov exponent against the
parameter ©.
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A4 ] Fig.2 Schematic diagram of
an adaptive control
system. X, is the
desired output, X is

P
Adaptive Algorithm the actual output, and
e is the error signal.
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Fig.3 (a)The difference between the actual output x, with the desired output x,,
(b)Variation of the control parameter f.




