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Bifurcations and Chaotic Motions
in a Two-axis Rate Gyro

Heng-Hui Chen, Ming Chang and Fu-Ping Chang

Abstract

An analysis is presented of a two-axis rate gyro mounted on a space vehicle that is
spinning with uncertain angular velocity @z(t) about its spin of the gyro. For the non-
autonomous case in which @y(t) is sinusoidal function, this system is a strongly nonlinear
damped system subjected to parametric excitation. By varying the amplitude of sinusoidal
motion, periodic and chaotic responses of this parametrically excited nonlinear system are
investigated using the numerical simulation. The results, Symmetry-breaking bifurcations,
period-doubling bifurcations, and chaotic behavior of the system are observed by various
numerical techniques such as phase portraits, Poincar€ maps, average power spectra, and

Lyapunov exponents.
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1. Introduction

A number of studies over the past
few decades have shown that chaotic
phenomena are observed in many physical
systems that possess both non-linearity
and external excitation [1]. The
nonlinearity of a system, through the
various system parameters, exhibits a
variety of nonlinear behaviors including
jump phenomenon, multiple attractors,
subharmonic vibrations, symmetry
breaking-bifurcations, period-doubling
bifurcations, crisis and chaos [2]. In
addition, a symmetry-breaking bifurcation
occurring before a period-doubling
bifurcation, and the appearance of chaos
amidst a cascade of period-doubling
bifurcations have been observed in driven
damped pendulums or Duffing’s
oscillators by MacDonald and Raty [3]. In
a gyroscopic system, a single-axis rate
gyro mounted on a space vehicle free to
move in various ways also exhibits

complex nonlinear and chaotic motions.

The nonlinear nature and chaotic motion

of a single-axis rate gyro were
investigated by Ge[4] when the vehicle is
spinning sinusoidally with respect to the
spin axis of the gyro. This system is
characterized by parametric excitation and
exhibits complex nonlinear phenomena in
the presence of sinusoidal excitation,
including subharmonic vibrations, Hopf
bifurcation, symmetry-breaking bifurcations,
a series of period-doubling bifurcations,
and chaos.

In this paper, an analysis is presented
of a two-axis rate gyro mounted on a
space vehicle that is spinning with
uncertain angular velocity @z(t) about the
spin of the gyro. For the non-autonomous
case in which @y is sinusoidal function, a
number of numerical techniques are used
to detect the existence of symmetry-
breaking bifurcations, period- doubling
bifurcations, and chaos of the
parametrically excited nonlinear system.
The natures of the periodic and chaotic
motions are shown in phase plane

diagrams, Poincaré maps and average
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power spectra. The qualitative bifurcation
diagrams, parametric diagrams and
quantitative Lyapunov exponents in
parametric space are also computed to
determine the values of bifurcation points

as well as chaos onset.

2. Equations of Motion

We consider the model of a two-axis
rate gyro mounted on a space vehicle as
shown in Fig. 1. Let X, Y, Z be a set of
axes attached to the platform and &, m,
be gimbal axes. The rotor is mounted in
the inner gimbal that can turn about axis X
with rotational angle 6. The rotation of the
inner gimbal is resisted by torsional spring
and damping torques defined by T.(=k;6),
di 6 respectively. The outer gimbal rotates
about the axis Y with rotational angled,
and motion about this axis is also resisted
by torsional spring and damping torques
defined by k20, d> q) , respectively. Using
Largrange’s equation [5], the differential
equations of a two-axis gyro with

feedback control was derived as follows;

(A+A1)[0-0xsinP+0c0s ) P+ WxCOSP -7
sing)]-(A+B1-C1) 0, 0c-(-wp)He+d) 0+k1 0
=0, (1)
d/de[(A+B1) wcos8 -Craxsin6+Ax(9+wy)-
sin6H,]+da(9+wy)+ kag = 0, 2)
where

6=d6/ds, p=d¢/dt, H.=[C(w+Wy)]=const.,
w59+(wxcos¢-wzsin¢),

a),,=(¢5+a)y)cos 0+(wxsin@+wzcosP)sin,
W=-(¢+0y)sinB+(wxsing+ w008 ¢ )cosb.
Wx, Wy, Wz denote the angular velocity
components of the platform along output

axis X, input axis Y, and normal axis Z,

respectively. A, B (= A), C and A;, B1, C

denote the moments of inertia of rotor and
inner gimbal about & 7, and {,
respectively. A » denotes the moment of

inertia of the outer gimbal about axis Y.

3. Numerical Simulations and
Discussion

We consider the case in which w; is
time-varying, @y = 0 and wx = 0. The
origin (6, 6, ¢, ¢$=(0,0,0,0) is an

equilibrium point. However, in the
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following analysis, with a harmonic input
with respect to the spin axis Z, i.e., 0z =
fsinayt, the origin becomes a hyperbolic
closed orbit. The differential equations of
the model can be simplified as follows:

6 + 2010 + k6 + 00 + NF1(6,6,7 =0, (3)
6 +2B10 + Bao - P36 + NF2(8,6,1)=0 (4)
where

k=1, O=d0/dt, p=d¢/dT, NF1(6,¢,7) and
NF>(6,¢,7), shown in Appendix A;
a».=[k1/(A+A1)]”2; frequency ratio @ = @y /W,
the exciting frequency is close to twice the
natural frequency; time scale T=wut;
damping ratio a1=d1/[2(A+A1) @],
Bi=d2/[2(A+B1+A2) 0,};
ar=Hd/[(A+A) @], Br=ko/[(A+B1+A2) @),
Ba=H/[(A+B1+A2) ).

With the input amplitude f varied, the
response results are obtained by numerical
integration in the phase planes, Poincaré
maps, average power spectra, bifurcations
and Lyapunov exponents. Hopf
bifurcation occurs when the parameter f

passes through 15.4, the original

equilibrium point becomes unstable and a

period-2T stable symmetric limit cycle for
f=18 arises as shown in Fig.2, where
T=2n/w. A system with a symmetric
nonlinear function can undergo either a
symmetry-breaking bifurcation for the
symmetric solution of the system or a
period-doubling bifurcation for the
asymmetric solution of the system. When
f=<29.5, a symmetry-breaking bifurcation
occurs. After this bifurcation, the original
stable period-2T attractor becomes
unstable, a pair of stable period-2T
attractors arise and invert each other as
shown in Fig.3 where f=31.5. As the
parameter f increases further across f=32,
a stable periodic orbit appears with
doubling period of the original orbit,
thereby indicating a period-doubling (flip)
bifurcation. When the parameter is
increased, a cascade of flip bifurcations
occurs and leads to the onset of chaos. At
f=34, the chaotic attractor abruptly
disappears and a period-67 symmetric
orbit appears, as shown in the phase plane

and average power spectrum (Figs.2,4).
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To investigate bifurcation further, a
Poincaré plane was used to display the
bifurcation diagram, which shows
Poincaré fixed points x, plotted against the
system parameter f. The Hopf bifurcation,
symmetry-breaking bifurcation, and
period-doubling bifurcation are clearly
shown. As the system parameter f is
gradually increased through the parametric
space, the bifurcation diagram obtained
shows different types of bifurcations and
chaos (Fig.5). The Hopf bifurcation
appears at f=15.4, the symmetry-breaking
bifurcation at f=29.5, and the period-
doubling bifurcation at f=32, as observed
earlier. To investigate the periodic and
chaotic motions in the bifurcation diagram
further, the phase planes, Poincaré maps,
and power spectra are used. After a
cascade of period-doubling bifurcations,
the dual response becomes chaotic rather
than periodic for f=32.5. When f=33,
conjunction of the two inverse chaotic
attractors creates a larger attractor. With

the parameter increased, a large-amplitude

chaotic motion appears in the phase plane,
Poincaré map, and power spectrum as
shown in Fig.6, where f=36.3. The power
spectrum of a chaotic motion is a
continuous board spectrum.

To confirm the chaotic dynamics, a
quantitative Lyapunov-exponent spectrum
was conducted. The algorithm for
calculating the Lyapunov exponents was
developed by Wolf et al. [6]. A spectrum
of the largest Lyapunov exponent as a
function of the parameter f is shown in
Fig.7. As one of the Lyapunov exponents
is positive, the motion is characterized as
chaotic. When at least one Lyapunov
exponent A; = 0 exists, motions are not
stationary. For periodic motions, the
Lyapunov exponents are non-positive and
include only one zero Lyapunov exponent,
while one negative exponent becomes
zero when one type of periodic motion
bifurcates to another.

For f = 36.3 the Lyapunov exponents
were found to be A; = 0.171, A, =0, A3 =
-0.936, A4 = -0.938, As = -1.534 and the
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Lyapunov dimension d; = 2.183 was also
calculated using the relation proposed by

Frederickson et al. [7]:

LA
dL:j+;A’j+ll, | (3)

where A, is the largest Lyapunov exponent
and j is the index of the smallest non-
negative Lyapunov exponents. From the
above discussion, it is evident that
Lyapunov exponents are a measure of the
fractal geometry of the attractor and the
property of sensitivity dependence on

initial conditions.

3. Conclusions

In this paper, a two-axis rate gyro
with sinusoidal velocity about its spin axis
Z exhibits its nonlinear characteristic for
both sin, cos functions and parametric
excitation when the parameter is varied. A
variety of parametric studies were
performed to analyze the behavior of
periodic attractors routing to chaos via
distinct bifurcations by using the

numerical simulations. The behaviors of a

symmetry-breaking precursor to period-
doubling bifurcations and a cascade of
period-doubling route to chaos occurred in
this system. The occurrence of the chaotic
motion of the full system is also detected
by calculating bifurcation diagrams,
power spectral diagrams and Lyapunov

exponents.
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Nomenclature

X, Y,Z fixed coordinate system attached
to the platform

& n,{ moving coordinate system
attached to gimbal axes

0, ¢, v  Euler angles(precession angle,
nutation angle, spin angle) as

generalized coordinates

AAC

A1,B1,Cq

ki, k2

di, dy

the moments of inertia of rotor
about &, 1, and { axes

the moments of inertia of inner
gimbal about &, 1, and § axes
the moment of inertia of the
outer gimbal about axis Y
torsional spring coefficients
with respect to the axes of
rotation of the 6, ¢ angles,
respectively

damping coefficients with
respect to the axes of rotation of

the 6, ¢ angles, respectively

Wx, Wy,wz the angular velocity components

Wy

of the platform along output axis
X, input axis Y, and normal axis
Z, respectively

the natural frequency of the
system

the exciting frequency of
harmonic input

the amplitude of harmonic input
the period of attractors of the

system
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Appendix A

NF1(6,0,7)= ~(A+B1-C1)(-$cr00z0,+(- 0,20 251+512202°+ 29 c2020,¢1)c1) [(A+A1) 0:2]-
He(-0upc1-s1c20a+ o)/ [(A+A1) 0,21-(9c20200 +520,02)/ O

NF(6,¢,7)= ((522éczwawnA2—k2¢s12-¢3dza),,s12)C1+(-w32szA2+waéa)nA2)02(A+A1)+
(2C151060,2A2-C15162020:A2+(-0z WA+ 0z2s2A2)c2Cic1)e1+
(w.Ci512+ B W,Ar+(s2002 A2-éa».Az)Cl)HC+(k2¢+(-3129wzahA2+
s12520002 2A2)cz+¢5d2a),,+ C1s12éczwzx w,+(-0zn 2sz+waéw,,)cz(A+A1)+
(-251000,.2A2+2C15106 2 +(s1c20,A2-C 151C200n) D2+ (~ko$+c2 028 BA2-
Odr O+ Wz 252- 02O OYC2C1)C1)C1+(5207-0 Wbt 0wn) c1HCH(51252007%
512002 0.)c2+(-25100@,2+51C207 Wrtc2 0210 W,c1)C1)(A+B1))A+B1))/
[((A+B1)c2?+C15124+A2)(A+B1+A2) w7] .

where s1=sin8, sy=sin@, c1=cos6, cy=cos@, etc. Wa=fRINWOT, V=0 /Wn,6, =dWOA/dT.

Fig.1 A two-axis rate gyro.
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Fig.2 Two inversion-symmetric attractors: a Fig.3 A dual period-2T attractor for f=31.5.

period-2T attractor for f=18, a period-
6T attractor for f= 34 where the
symbols ‘+’ and ‘x‘ indicate one
period-T of @, = fsinwr.
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Fig.4 An average power spectrum of Fig. 2 Fig.5 The bifurcation diagram.

for f=34.
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Fig.6(a) A symmetric chaotic attractor for Fig.6(b) A symmetric chaotic attractor for
f=36.3. f=36.3.
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Fig.6(c) An Average power spectrum for Fig.7 The largest Lyapunov exponents.
f=36.3.




