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Abstract

In this paper, its features are: 1.The complete nonlinear dynamics of the pursuit-
evasion motion is considered in three-dimensional spherical coordinate system. Neither
linearization nor small signal assumptions are made. 2.The nonlinear H_ guidance design
is derived analytically and expressed in a very simple form. 3.Unlike adaptive control
concept, implementation of the proposed H_ guidance design does not need the
information on target acceleration while ensuring acceptable intercept performance for
arbitrary targets with the finite acceleration. 4.The derived guidance design exhibits strong

robustness against variations in target acceleration.
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Introduction

This paper presents the direct use of
nonlinear H_ control theory to the missile
complete six degree-of-freedom nonlinear
flight dynamics, which has not been
considered in the literature before. Under
this approach, the exact nonlinear
equations governing both the longitudinal
and lateral motions are considered, and the
missile control design is formulated as a
nonlinear H_ disturbance rejection
problem where unmodeled aerodynamics,
and  unpredictable  disturbances
(maneuvering targets). The characterization
of the nonlinear H_, control law relies on
the solution of a first-order, second-degree
nonlinear Hamilton-Jacobi differential
inequality (HJPDI). An excellent
analytical solution for missile control
application is found in this paper by a
simple form which is applied by the
dissipative theory, and the resulting
nonlinear H_, control law is shown to be in

a simple structure of proportional

feedback.

A robust control approach for future
missile autopilot design was present in
Bbuschek (1997), Hyde (1995), and
Ferreres et al. (1994). Wise (1997) has
proposed a nonlinear H_ approach for high
AOA missile agile missile by
approximating the solution to the HIPDI
equation and a state dependent Riccati
Equation (SDRE) developed to solve for a
nonlinear H_ control that satisfied the
HJPDI. This methodology recently
developed by Yang and Chen (1998) for
nonlinear H_ guidance design synthesis.
This appro.ach is systematic and valid for
general vehicle. A remarkable property of
the derived nonlinear H__ missile controller
is that the desired control force and
control moment to reject the disturbances
can be computed quantitatively in advance
without knowing the information of flight
vehicle's aero data. After the control force
and moment have been found, the required
control surface deflections can then be

determined from the look-up aero tables of

the flight vehicle to be controlled. This
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property is unlike the conventional control
design where aerodynamic model must be
established before any control activity can
be made. Due to the aerodynamic
irrelevance in constructing the nonlinear
H_ missile controllers, the derived control
law can be equally applied to airplane by
Kung (2000) , helicopters, and other

Right vehicles.

Dissipation and Nonlinear H
Control

In this section, we apply the
dissipative theory to derive the standard
results of the nonlinear H_, control theory
for later use. The dissipative theory
generalizes the idea of passivity, and
provides a means of robust stabilization
for nonlinear systems. Consider a general
nonlinear system in the form

X = f() +gxOwW, f(0) =0  (la)

where oy *
dV (x(t))/dt = —x
ox

denotes the total derivative of V(x°(¢))

along the state trajectory x(¢). The supply

z(1) = h(x(2), w(1)), h(0) = 0 (1b)

Where w(?) is the input vector, and
z(t) is the penalized output vector.
Associated with this nonlinear system,
there is a quadratic function r(#) which is
called supply rate. The supply rate r(¢) is
selected based on the system properties,
for example whether it is norm bounded or
passive. System (1) is said to be
dissipative with respect to the supply rate
r(-,), if there exists an energy storage
function V(x), Vx#0 satisfying the
following dissipative inequality:

0 S V(x(1)) < for(w(&), 2(ENdE (2)
for all t and for all x(*), z(*), and w(e)
satisfying Eqs. (1). If V(x) is a
differentiable function, then an equivalent
statement of dissipativity (2) is

dv (x(1))
— s r(w(e) (1)) ve 2 0 3)

oV ov oV ;
dx;  0xy " ox,

rate r related to H_ control problem is

defined as
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r(w(t),z(t)): yszw— sz (4)
Now, we assume that f (x), h (x) are C”
functions (C” belong to the complex

space) and x=0 is the equilibrium point

22

, then the system is said to have L, gain <
Y, ie.

T T

I (7 o<y’ | (w! w)at ©)
Since JOT wlwdt and JOT Z'zdt are the input
energy and the output energy of the
system, respectively, the system satisfying
Eq. (6), according to the definition, then
has L,-gain lower than or equal to y. The
smallest 7y satisfying Eq. (6) is called the
H_-norm of the system. The equivalence
between Eq. (4) and Eq. (6) reveals that a
system which has L,-gain yis a dissipative
system, and vice versa. Hence, from the
viewpoint of dissipation, we can say that
the nonlinear H_ control technique is a

means to make a nonlinear system

(%?)Tf +2(

! ["V) g()g(x) [‘w) (aV) S0+ AT (39h06) <O

of the system, i.e., f (0) =h (0) = 0.
If there exists a scalar C! function

V:R"—R* with V (0) = 0 such that

®)

dissipative.

When control u. is applied to the
system, we obtain the controlled system
as:

s= S+ uEwr g (Ta)

= [hl (x):l
Pyt (7b)
where p,, is a weighting coefficient. The
nonlinear H_, control problem is to find
the control u such that the L,-gain of the
closed-loop system is less than y. By
replacing f (x), g (x), and h (x) in Eq. (2)
with f(x)+g,(x)u,g,(x) , and [h{(x)p,u’]",
respectively, the condition that the L,-gain
of the closed-loop system is lower than ¥,

becomes

_ 1 ov l T
)[ — &8l ngzgz](axj 2h1h|<0 )
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and control law u

L2V
- stof2)

®)
Hence, solving the nonlinear H_ , control
problem is equivalent to finding a positive
function V (x) satisfying HIPDI. The
corresponding HJPDI for the flight control
problem will be derived in the next
section. It is worth noting that the
existence of a positive V (x) satisfying
HJPDI guarantees the boundedness of the
state z (x) in the sense of Lyapunov
stability.

In the following flight control
formulation, the manipulations of cross-
product matrix will be frequently referred

to, and the cross-product matrix S (K)

induced by the vector K=[k, k,

Missile Dynamical Model and
Aerodynamics

The basic set of axes used throughout
this paper is defined in Fig.1. Axes shown
here is a set of body axes, X, y, and z fixed
the missile. Note that the origin of this
rotating coordinate is the center of gravity.
The resultant of external forces
(aerodynamic force and thrust) acting on
the missile can be decomposed into three
components along x, y, z-axis, which are
X, Y, and Z, respectively. The six degree-
of-freedom rigid body motion of a flight

vehicle can be described by the following

differential equations:

ky]"defined as m,U=m (-WQ+VR)+F, +w, (lla)
0~k K m, ¥ =mgy(~UR + WP) + F,+w, (llb)
SKy={ k5 0 -k
~ky k0 (10) m, W =m,(-VP+UQ)+F, +w, (11¢)
Le P= LR+ PO) =Ly (Q - PRY+ Iy (R: =)+ Iy ~ L )OR+ L+w  (11d)

I,0= —lxy(}.’+QR)—1yz(1.e—PQ)+1x,(P2 “R)+Uy -1, )PR+M+w, (lle)

I,P= —lyz(Q+PR)—Ixz(1.i—QR)+1xy(Q2 ~P)+ (I -1y )PQ+N+w,  (11f)
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where U, V, W, and P, Q, R are standard
notations for linear and angular velocities,
respectively; I,, I,,,---, etc, are the
moments of inertia of the flight vehicle;
m, is the vehicle's mass. F,, Fy, F,and L,
M, N are the applied forces and moments

which are accessible from the models of

gravity, aerodynamics, and thrust, while

u 0 -R QU Fe] | [
Vi=-|{ R 0 —pjV|+—|F,|+—]|wy
vl e poow "sUE | ™| w,
I Iy Io|® 0 -R QT/x
w Iy Ixl0l=-|R 0 -PlI,
e Iy Iz] g -Q P 0|y

w,, w,, w,, and w;, w,,, w, are the applied
forces and moments resulting from the
unmodeled aerodynamics or from the
unpredictable disturbance such as
maneuvering targets. Eqs. (11) can be
reformulated to a compact matrix form
which is more suitable for nonlinear

control design.

(12a)
x Tu|P||L w;
Ty 1y | Q|+ M |+| Wm
ye 1z {R| [N wy

(12b)

To further simplify the notations, the following definitions are used throughout the paper.

s0=lv v Wil =lug Vo Wl +[u v wif =Sg+00)
Qo=[r 0 R =[n @ R +[p g I = +al)
“Zz[FX Fy Fz}r=[Fx0 Fyo FzO}T*Ux Iy fz}rzuz,‘*“o’
ug=[L M NP =[lg My Nolf +[1 m nf =uq +u,

WO"_'[Wx wy Wz}r’wa)=[wl Wm Wn]T

where the symbols with subscript
zero denote the values at equilibrium point
(trim condition), and the lower-case

symbols denote the deviation from the

equilibrium point. However, it needs to be
noted here that we do not make the
assumption of small deviation, i.e., the

nonlinear terms 6'c and ®'o are not be
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negligible when compared with the linear

terms ¢ and . In terms of the notations

® 1 1
o =-S(Q+o)(Xo+0)+ —(uXg+us)+ —wy
mg ms

w = =131 S(Qp + @) pr (Qp + ) + I3} (uQq + 1y, + T3 wy,

defined above, Egs. (12) can be recast into

the following form:

(13a)

(13b)

where Iy is the matrix formed by the moments of inertia of the flight vehicle:

Txx Ixy Iy
Iy =|ly Iy Iy,
Iy Iy I

The cross-product matrix S(-) has been defined in Eq.

FzO
Lo
My
No

=-Qolo + PRV

Fxo —Ro¥o + 0o
uZ(,: Fyo =msS(Qo)ZO =mg RoUo-—PoWo

qu = = S(Qo )]M Qo

1,(08 - R)+QoRo I3, — 1)+ Py(Qol 1z = Rol 1)
=| I (R = P )+ PoRoU s = I3)+ Qo (Rod oy — Pol 1)

Ixy(POZ ‘Q(%)“‘POQO(Iyy 'Ix.x)+RO(POIyz -0Oolyz)

Substituting u2., and u£2, into Egs.

(13) yields the nonlinear equations of

d [c _[-5@p) S(o)
dt|o| 0

(14
motion with respect to the equilibrium

point as

(o)
I;}S(IMQO)—IX,}S(QO)IM}LJ -

+

where the relations -S(w)Z ,=S(Z,)® and -

I,S(0)I,,Q=1,S1,Q,)». The associated

[S(@)

(1
m &

0

0

4
Iy

0 To
@

L0 Iy S@)y |

[z}

1
| 0 Iy fte (15)

flight control problem is to design the

control force U, and the control moment
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u, so as to track the velocity command
and the body-rate command Q;=[P0, Q,
R,] in the presence of the external
disturbance [w, w,]".

-S(Qp + @) 5(Zo)

f(X)=[

L 0
g.(x)=g2(x)={ms }

0 Iy

where the state variable x is defined as
x=[0” &@1=[uv wpqrl,

control u=(u; uyV'=[f, f, f.lmn]’, and
disturbance w=[w_ w, 1"=[w, Wy W, W W,
w,]". Next, we need to specify the output

signal z to be controlled as in the form of

{hl (0',0)):|
z —
pu

where

%

2

h(o,0)= (%MSUTG-%%CUT]MG))

is a measure of tracking performance;
p=lp, p, p.are weighting coefficients
concerning the trade-off between tracking
performance and control effort. By

choosing weighting coefficients properly,

0 I3 SU Q) - 11 S(Q0 + @)y

Nonlinear H.. Velocity and Body-Rate
Control

Comparing Eq. (15) with the
standard nonlinear plant in Eq. (7a), we

have

] (16a)

(16b)

Eq. (7b). In this control mode, the ultimate
control purpose is to track the velocity
command X, and the body rate command
Q,, and to make the tracking errors 6=X.-
3, and 0=Q-Q as small as possible. To

reflect these requirements, we choose z as

a7

(18)

it is possible to obtain an acceptably small
h, without consuming a lot of control
effort u. The problem of the H,, , flight
control design now can be stated as: find

the control u=[u} u_]" that the L,-gain of
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the system is lower than vy, i.e., control effort u under the action of

Ig( sz) dr fg(hlz + pg uTu) a maneuvering targets w. It is attributed to

= <y .
Ig(wT Wyt Ig(wg W+ dt 19) the above inherent property of guaranteed

disturbance attenuation level that H_,
In the above equation, a small value
flight control can exhibit performance
of y means that the output signal z is
robustness against the variations of
attenuated significantly, which, in turn,
disturbances.
implies that the deviations of the vehicle's
Substituting Eqs. (16) and Eq. (19)
velocity and body rate from the trim
into Eq. (8), we obtain the flight control's
values are small with small expenditure of
HIPDI as

2= @) ()

v\’
+ [—8}_] (-S(w)o - 5(Qp)o + S(Zg)w)

T
+G§3 UM SUnQ0)0 - I3 @)y - 13} S@Qp) 00

! r .1 T
+stpaa a+zpa,w Iyw<0 (20)

This is a nonlinear second-degree partial qualified V can be found, the nonlinear ,
differential inequality in the unknown flight controller is then given by Eq. (9) as

function V(o,w)=V (u, v, w, p,q,1). Ifa

u=[qu=—ngTﬂ=__'_ m;'y 0 [oV/oo
U, p3 ox p3 0 Ii} LoV /ow

2D
Hence, the main problem of nonlinear H_, search for a possible quadratic solution for
flight control design is to find a positive V the nonlinear control problem in a similar

satisfying the HIPDI in Eq. (20). We form:
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__l_ T 7| Comsis 0 i
V(o,w)—2[0 “’I 0 CmIM][“’] (22)

where C;, and C,, are scalar constants to
be determined. Substituting Eq. (22) into

Eq. (20) and performing the partial

1 1
All(o’)=‘ccmss(90+°’)*Imspcs]3+;[

Ay @) =—CoyS€Q0 + ) pg +CoySUp ) +=| — ——
! (ﬁ 2

The remaining problem is to
determine the values of C,, and C,, such
that Eq. (23) is satisfied for arbitrary ¢
and ® . The difficulty appears in the

functional dependence of A, and A, on ,

which destroys the quadratic structure in

g {—————Jq? e, G

[ Y

0

e

‘—2]c213
Pu

2 -GS+ 22

differentiations with respect to ¢ and ® ,

we get

LT wr[f’n(a’) CamsS(Zo):l[o]<0
0 Ap(@) Jo (23)

where

(24a)

Pa)IM (24b)

Eq. (23). Fortunately, this functional
dependence on ® can be removed by
employing the properties of the
crossproduct matrix mentioned. Using

these results in Eq. (23) yields

o
]<0
9]

According to the matrix inequality formula, the above equation is equivalent to

11 1 ). 1
——=—-—1Cgo +—msps <0
2[72 ‘pEJ 4 (252)

_Cws (f?o)/M+-Cm1MS(f>o) -[——-— m’3+-pm1M
e

+l_;[;12._ plu]cz mx,,{(*cgmgsz(zo)}o

(25b)




B2k o REAT—F=A8

These two inequalities are then
solved together to find the ranges of C,,
and C_,. An explicit but sufficient
condition which is found by taking the

norm value for each term in Eq. (25b) can

be expressed as

2
C. > mslz’apuzr
20" - pg)

&L o o)

where

4C2 T
“C")zé{;u%_rlzlpdll”’ﬂ w'z—d:gzozo J

(26a)

(26b)

puz)cczr BT

As expected, the ranges of C;, and C,
are dependent on the trim conditions €,
and X . However, it should be noted that
the above two inequalities do not
necessarily determine the lowest bounds
of C;, and C. The lowest bounds can be
found numerically by searching for the
minimum C; and C satisfying Egs. (25).
Up to this stage, we have shown that
the V(o,w) given in Eq. (22) is truly a
qualified solution of the HIPDI, and the

two constants C;and C, in V(o,w) can be

determined analytically as in Eqgs. (26).
After having obtained the solution V(o,),
we can compute the desired control force
and moment by substituting Esq. (22) into

Esq. (21).

uo.-_.—ft_ 1 aV l 1,, :
ﬁf”ka" /f P3 w| (27a)
1 16V
C;ﬁﬂ’:
A E“H (27b)

Although the procedures leading to the

$
S F ~
1]
l
@

solution of HIPDI are rather involved, the

resulting H_, control is surprisingly

simple. It can be seen from Egs. (27) that
the control force U, is proportional to the
velocity tracking error 6=X-X; while the
control moment U, is proportional to the
body-rate error ®=Q-Q,. This simple
proportional feedback control can
guarantee that the nonlinear flight control

system 1is stable in the sense of Lyapunov

and has L, gain lower than v, as well.
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Robust Test via Hard-Ware-in-
the-Loop

The derived nonlinear H__ controller
is simulated by Hard-Ware-in-the-Loop in
CARCO Inc. It is noted that implementing
the nonlinear H_ controller itself does not
require the aerodynamic information of
the Flight Motion Simulator. As we can
see from Egs. (27), the H_, control force
U, and control moment ¥, depend on the
feedback gains C, and C,, which, in turn,
depend on the mass #, and moments of
inertia I,, of FMS. In the following

simulation first-order missile dynamics is

assumed:
u, 1
u Tus+1 (28)

where U is the input acceleration
command given by (27a) and (27b), and
u, is the actual missile acceleration
response measured from the sensor
outputs. The term T, is the time delay
which may be subject to parameter
uncertainty. The robustness of the 3D

nonlinear H_ guidance design will be

demonstrated in the following aspects: (1)
robustness against variations in initial
engagement condition, (2) performance
with the different time delays, (3) the
responses with time delay, (4) the control
energy with the different time delays. (1)
robustness against variations in initial
engagement condition

In this part, the normalized initial
angular momentum A, is used as an index
to reflect the impact of initial engagement
conditions. The magnitude of A, is
between 0 and 1. It is found from Fig.2
that for any h_o between O and 1, i.e., for
any engagement condition, the 3D H_,
guidance design maintains excellent
disturbance attenuation ability with all L,-
gains smaller than 1, while the
performance becomes worse when
changing the scale of the time lag, as can
be seen from Fig.2.
(2) performance with the different time
delays

Fig.3 shows the missile performance

to maneuvering targets with time delay
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inputs. The ideal control command has a
better performance than the controller
with the actuator constraints.

(3) the responses with time delay

Fig.4 shows the missile responses to
maneuvering targets with time delay
constraints. The responses of the time-
delay system are bounded.

(4) the control energy with the different
time delays.

The RMS nondimensional control
energies of two kinds of control inputs are
shown in Fig.5. The lines with the actuator
constraints show large control energy

trades to achieve better performance.

Conclusions

In this paper the nonlinear Hoo
control theory has been applied to the
control of general six degree-of-freedom
missile flight motions. A new formulation
of flight dynamics leads to missile flight
control motions. The associated Hamilton-
Jacobi partial differential inequalities are
solved analytically, leading to nonlinear
H,, flight control with simple proportional
feedback structure. A remarkable property
of the derived nonlinear H_, controller is
that the desired control force and control
moment to reject maneuvering targets can
be computed quantitatively in advance
without knowing the information of aero

data.
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