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STRICTLY PROPER LINEAR H., CONTROLLER
DESIGN
BY ENERGY DISSIPATION APPROACH

Pao-Hwa Yang

Abstract

In this paper, a strictly proper H,, controller design based on the energy dissipation
approach is proposed for a linear problem with direct feedthrough from an exogenous
input to the controlled output. A comparison of the energy dissipation controller with the
state-space formulas of Glover and Doyle (GD) is made. In some cases, the proposed
strictly proper dissipative controller is as good as the non-strictly proper GD H_, controller

in terms of H_, performance.
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1. INTRODUCTION

The energy dissipation approach,
originally developed by Willems [1] and
Hill and Moylan [2], has now drawn
attention of many investigators and been

successfully employed to the nonlinear

Hoo control problem [3-7]. In [5], by the

energy dissipation approach and the
separation principle, Ball, Helton, and
Walker (BHW) derived a necessary and
sufficient condition for the existence of
solution to the problem and presented a
formula of constructing a nonlinear Ho,
dissipative controller. In [5], for the
reason of simplicity, BHW only
considered a special case for the nonlinear
Ho control problem with zero D,;(X),
which excludes the direct feedthrough
term from the exogenous input to the
controlled output. For the case with
D,,(X)=0, the equations involved in the
construction of the nonlinear H,
dissipative controllers are much more
complicated than those considered in [3-

5]. The formulas of constructing nonlinear

Hoo controllers for the more general case
are given in [8,9].

In this paper, we consider the design
of strictly proper Ho, controllers by the
energy dissipation approach for the linear
problem with nonzero feedthrough term
(D). In fact this problem is just a linear
version of that considered in [8,9].
Specifically, it is not our intention to
derive the linear controller formulas in
detail since they can be easily obtained by
simplifying those in the nonlinear Hy,
dissipative controller [8,9]. Instead, we
will concentrate on discussing the
advantages and the limitations of the
energy dissipation approach for the linear
problem and comparing it with the well-
known state-space Ho, formulas of GD
[10]. Hence, the information gathered
from this study may also be of help in
understanding more about the nonlinear
dissipative controllers. Additionally, using
the assumption that the two Riccati
solutions are positive definite, both Isidori

[4] and BHW [5] showed that the linear
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version of their controllers coincide with

that of DGKF [9]. However, the linear

version of the H, dissipative controllers
in general are different from that of GD
[10]. It is due to the structure of the
dissipative controller restricted to be
strictly proper and the prescribed Hoo
upper bound assumed to be greater than
the maximal singular value of D,.
Ultimately, we will show that when GD
Ho, controller is strictly proper, it is
exactly the same as the dissipative Heo
controller we propose. When the maximal
singular value of D,; is less than the
optimal He norm of the closed-loop
system, the proposed strictly proper
dissipative controller is as good as the
non-strictly proper GD H,, controller in
terms of H,, performance.

The rest of the paper is organized as
follows. In Section 2, we briefly discuss
some issues: the basic concept of the
energy dissipation, the problem
formulation, the Hamiltonian function of

the closed-loop system, the assumptions,

and the construction of a linear dissipative
controller. In Section 3, we compare the
linear Ho, dissipative controller with the
GD H controller. Furthermore, some
illustrative examples are also enclosed to
demonstrate the advantages and the
limitations of the proposed controller.
Section 4 gives the concluding remarks.
Finally, in the Appendix, a proof is
provided for some cases that GD H,
controller is identical to the dissipative

H,, controller we propose.

2. Design of Dissipative Controllers
In this section, we will briefly
introduce some concepts regarding to the
dissipative system and employ them to
construct a strictly proper Ho, controller
for a linear generalized plant with direct
feedthrough from the exogenous input to

the controlled output.

2.1. Concept of Dissipative System
Definition 2.1 Consider the following

system G
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|x=F(x,w)
“lz=H(x,w) )

where w is the input and 7 is the
output. With . a pre-assigned tolerance
level, the system is said to be V.-
dissipative if there exists a nonnegative
energy storage function E with E(x(0))=0
satisfying the following [9]
JAE -7 b o < Ec0)- £6)

=—E(x(T))<0 (2)

The inequality means that the Heo
norm of the system is less than or equal to
y as T approaches to infinity. When y=1,
the inequality implies that the input
energy is greater than or equal to the
output energy. Accordingly, some energy
has been dissipated and the system is
called dissipative. From Definition 2.1, it
is easy to see that the system is vy. -
dissipative if and only if the energy
Hamiltonian function
H=[e -7 "+ . -Fx,) 3)
is nonpositive in the domain bof interest,
where E, denotes the derivative of E with

respect to x.

2.2. Problem Formulation
Consider the following linear
generalized plant:
X=Ax+Bw+B,u
G(s) :9z=C,x+ D, ,w+Du (4)
y=Cyx+D,w
where x € R” is the state of the
system, z € R”! is the controlled output, w
e R™ is the exogenous input including all
commands and disturbances, u € R™
represents the control input, and y € R” 2 is
the measured output. The problem is to

find a controller

u=Cys ®)

such that the closed-loop system is stable

K(s):{'f: AyS+Byy

and ‘v -dissipative.
2.3. Hamiltonian Function
According to (3), the Hamiltonian
function for the closed-loop system can be
written as follows:
H 4y pecp W %:6) = "Z"2 ‘72““’"2 +E;(x,6)-
(A E+ B y)+E (x,&)(Ax+ B w+ B,u]
Now the problem is to find A;, B,

and C, such that the closed-loop system is
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stable and the Hamiltonian function is
nonpositive for all w, x and § .
Specifically, the problem is to find a
nonnegative differentiable energy function
E(x,E) with E(0,0) = 0 so that there exist
Ay, B, and C, such that

max H,y pece WX, <0 0

2.4. Assumptions
The generalized plant described by
(4) and the prescribed bound are assumed
to satisfy the following:
(A1) (A,B,) is stabilizable and (A,C),) is
detectable.
(A2) D,, s full column rank and D, is
full row rank. D, and D | are chosen
5J_ ] are

such that [D, D,,] and
D,

unitary.

(A3) rank[ Jol-A B, ] =n+m,and
G Dy,
jol-A B,

rank
G, Dy,

] =n+p, Ve

R.
(Ad) (D, C-A+BR' D, C,) s
detectable.
(AS) -A+B,DTR'C, B,DT) is

stabilizable.

(A6) Y> 0, (D)), ie.,vis greater than

the maximum singular value of D,,,

where
A r o0
R=D[D, -{7 ) 0} (8a)
70
R=p, DI |V 'n
ol | 0 0:| (Sb)
Dlo _[Dn DIZ] (8C)
D, = D“J (8)
D2l

Assumptions (Al) to (A3) are quite
standard [10]. Assumption (A1) is the
well-known necessary and sufficient
condition for the existence of stabilizing
controllers. (A2) is satisfied by most
practical problems in which a weighted
control input is part of z and a measurement
noise is part of w. Assumption (A3) means
that both G, (s) = C, (s/ - AY' B, + D,,
and G, (s) = C, (s - AY" B, + D,, have
no transmission zeros on the imaginary
axis. Assumptions (A4), (AS), and (A6)
are made to simplify the presentation.
Later in this paper we will discuss how to
remove (A4) and (AS). (A6) implies that
R:=(D/\D,- ¥I)". How to relax (A6) is
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still under investigation.

2.5. Construction of a -dissipative

Controller

The condition for solution
existence and the construction of a vy -
dissipative controller are summarized in
the following theorem.

Theorem 2.1 Consider the linear

generalized plant defined by (4) which

satisfies the assumptions in (A1) to (A6).

Let
R=(D\D, -y*D)" %a)
0= (DZIRDZTI)—I (9b)

M =(DlrzD|2 _DlranRDlTlDlz)_l (9¢)

and define
H,=A-B,RD|,C, —(B,RD|\D,, - B,)  (10a)
MDlrz(DnRDlﬁ _I)CI
Hg = _(BlRDlrlDlz _Bz)M(DlranRBlr

(10b)
-B])-B,RB]
Hy =C| [/ +(D,RD,, —1)D,,MD}, ]-
(D,,RD], - )C, (10c)
J,, = A+B,RD],Q(-C, + D,,RD!,C,)
- B,RD]C, (10d)
Jr = B,RD],OD, RB] — B,RB] (10e)

Jo==ClC,=(-C] +C[ D, RD])Q-  (10f)
(=C, + Dy RD|\C,)+C{ D, RD;\C,

Then the closed loop system is

dissipative if and only if there exist X > 0,
Y, > 0 such that J
H{X+XH, +XHg X-Hy<0  (1la)
JXY,+Y1JA+Y|JRY,-JQSO (11b)
Y, -X20 (11c)
Furthermore, a v -dissipative linear
controller K (s) can be constructed by

the following formulas

A | B 12a
Kdm<s>:=<AK,BK,cK>:=%’ﬂ( )
K

By =_(Y1 _X)_l(czf _CernRDzrl -

Y, B,RD;)Q (12b)
Cy =M[Dl7; (DHRDITI -NC, +
(DlranRBlr —Bzr)X] (12C)

Ay =A+B,Cy -B(C, —(B, - B« D,,)
R(D](D},Cy +C))+B] X] (12d)

Remarks

( i) If Assumptions (A4) and (AS) are
satisfied, the solution of (11), X and
Y,, are always invertible and relate to
the Riccati solutions X and Y, in [10]
as X=X, , and YI=YZY°;1. The coupling
condition Y;-X =2 0 in (llc)
corresponds to p(Y. X, )S\(z in [10].

(ii) If Assumption (A4) is not satisfied,

ie, (DfC,,-A+BR' DI C,):= DT
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Cl,-A ) is not detectable, one always
can find an orthogonal similarity

transformation matrix U =[U,U,] such

that
A T’\
UTAU = Ulrfw‘ 79 (13a)
UTau, UTA4U,
p’cu=[p'cu, o (13b)

which also decomposes the Riccati

solution X_, as

1 . >

00 ]thth 2 0 and
makes the subsystem (UITAU,, U/B, C,U)
satisfy (A4).

(iii) Similar remarks can be made for (A5)

[12], and therefore (A4) and (AS) can

be removed.

3. Comparison with GD Controller

In this section, we will compare the ¥
-dissipative controller K;; (s) with the
well-known GD H,, controller K, (s)
[10]. In the design of the Y -dissipative
controller, if we restrict the structure of
the controller to be strictly proper and
assume 7 is greater than the maximal
singular value of D,,, denoted by 7y >
G, (D)) » then the proposed dissipative

controller is better than the GD controller.

It is interesting to know the advantages
and the limitation caused by these
assumptions.

Let v,, be the optimal H,, norm of
the closed-loop system and be the

generalized plant defined in (4) , i.e.,

which satisfies the assumptions (A1)
to (A6). In addition, without loss of
generality, we assume that D= [ (; ],
D,,=[ 0 I ]Jand partition D, as

o
|
—
o
o

_____ } (15)

‘where D,,,, € RP™Xmp) andg D)) €

Rszpz

In the following, we will

compare the 7y -dissipative controller with

the well- known GD H_, controller in

three cases.

Case 1: D |,, = 0, and at least one of
Dyy115 Dyyizs Dy is zero.

The vy -dissipative controller K (s)= (A,

B, , C,) is exactly the same as the GD
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controller K;, (s). Note that both
controllers in this case are strictly proper.
The proof is enclosed in the Appendix.
Case 2: The condition of Case 1 does not
hold and Yo > Oppy (D).
The striétly proper Yy -dissipative
controller K, (s)=(A,, B, C;) will
make the H,, norm of the closed-loop
system less than or equal to v as the GD
controller (which is not strictly proper)
does.
Case 3: The condition of Case 1 does not
hold and Yy, < Gypoy (D))
The non strictly proper GD controller may
have a smaller closed-loop H,_ norm than
the strictly proper v -dissipative controller.
The limitation on the 7y -dissipative

controller is caused by the assumption that

v> Gmax (Dll)‘

Some examplés are given in the following
to illustrate the comparison of the GD and
Y -dissipative controllers.

Example 1: Consider the following

generalized plant

31
(1 0 0|1 0011 0]
0 -2 0 [0 1010 1
0 0 -3[0 0 1:15
o=l O © 531 0 0,0 0
s)= '
o 1 00 o001 ofdDN
00 1[0 0001
21T 0 [0 10100
0o 1 o fo o0 1:0 0
D, is partitioned as
b ip7 [331L0.9]
Dll=[_5'.”.‘-i.b.“.'3;|= 010 o] (I8
nz21 ) iz EO 0

which belongs to Case 1. A GD controller
with ¥ = 8 can be obtained from the
formulas in the proof (see Appendix),

which is obtained as K, =

62262 —2.0135 —0.0769 | 22973 —0.5302
[—0.0035 ~25294 —0.9887 | 0.1827 0.23901
~13236 -1.8682 —8.0218|0.1494 0.9476
{—2.8861 —02164 —0.0800| 0 0 J
03719 —0.1109 -0.9884| 0 0

From (12), the <y -dissipative controller is
constructed exactly the same as the GD
controller. The H_, norm of the closed-
loop system is 6.6835 which is less than
v. The optimal H_, norm of the closed-loop
system, Y,,, can be obtained by iteratively

reducing to the minimum at which the

(19)
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conditions of Theorem 2.1 still hold. For

this problem, v, =5.589581628.

Example 2: Consider

1 0 0 0 0 01:1]
0 -2 0[0 1 0 041
00 -3J0 0 1 o011
o=t O O[3 0 3 00 on
01 0/0 0 2 0!0
0 0 1]/02 0 0 0200
0 03 0.1/02 02 05 03;1
T e o T

02 02 05!03

which violates the conditions of Case 1.
We found that 6,,, (D)= 6.193914 is
smaller than the optimal H_ norm of the
closed-lvoop system Yo, = 6.4949637 and
the problem belongs to Case 2. A GD
controller with y= 6.5 can be obtained as
—417.53 -426.64 —427.36 | 425.39
44.035 49.862  52.262 | S52.142

769166 —65.735 —68.722
|-6.3429 —0.1051 -0.1923 [-0.3035]

GD

65338 |(23)

The H,, norm of the closed-loop system
with the GD controller is 6.49999 which
is less than y. From (12), the y-dissipative

controller is constructed as

—437.53 -447.26 -448.02
44.166  52.057 54.462

445.96
54.333

@1 72495 -69.183 —-72.159 |68.761 | (24)

-6.6380 -0.4093 —0.1125 [ 0 ]
The H,, norm of the closed-loop system
with the 7y -dissipative controller is also
6.49999 which is less than . The optimal
H., norm of the closed-loop system,y,
can be obtained by iteratively reducing 7y
to the minimum at which the conditions of
Theorem 2.1 still hold. For this problem,
Yopt = 6.4949637. Note that the vy -
dissipative controller is strictly proper
while the GD controller has a direct

feedthrough term.

Example 3: Consider

1 0 0 0 01

0 -2 0] 0 101

0 0 -3 0 1:1
Gs)=[1 0 0]531 0 310| (25)

0 1 0|0 020

0.0 1] 2. 0. 0i1]

11 1] 0 0 1i0
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is partitioned as

5.315 0 3
D,=| 010 2 (26)
2 I 0 0

which violates the conditions of Case 1.
We will see that 6., (D;;) = 6.41841881
is larger than the optimal H_, norm of the
closed-loop system H_= 6.18443841 and
the problem belongs to Case 3. A GD

controller with y. = 6.419 can be obtained

as
-5.2342 -1.5647 -1.6970| 1.0295
|-1.4906 03774 1.9684 | —2.5030
7119209 1.7797  -1.6526| —1.8569 | (27)
[-1.5749 23081 1.9111 | —2.4494]

The H,, norm of the closed-loop system
with the GD controller is 6.24423 which
is not only less than y but also less than
Omax (Dyy). From (12), the vy -dissipative

controller is constructed as

~12.226 —6.6068 63613 | 5.3863
-52554 —23377 —0.5433 |-0.1570
as =| 54660 07769 —4.0177 | 03522 |(28)
[-5.50s5 -0.5265 —07112| 0 |

The H,, norm of the closed-loop system
with the 7y -dissipative controller is

6.41883 which is larger than that of the

GD controller. In the y -dissipation
approach, y cannot be smaller than ¢, (
D)) = 6.41841881; while in the GD
approach, y can be further reduced until it
reaches its optimum Y, = 6.18443841 for
this case 3 problem.

From this example, we know since
the prescribed bound v in GD controller
can be further reduced to vy, , the non
strictly proper GD controller may have a
smaller closed-loop H,, norm than the
strictly proper dissipative controller. The
limitation of the proposed strictly proper
dissipative controller is caused by the

assumption Yop, > Gposy (D))

4. Conclusions

In this paper, the design of strictly
proper Y -dissipative controllers for the
case with nonzero feedthrough term had
been presented. We showed when GD H_,
controller is strictly proper, it is exactly
the same as the proposed dissipative
controller. When the maximal singular

value of D), is less than the optimal H,,
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norm of the closed-loop system, the
proposed strictly proper dissipative
controller can achieve whatever H_
performance the non-strictly proper GD

H_, controller can reach.

5. List of Notations

K the dissipative controller

Kcp the Glover and Doyle controller

R'K n-dimensional Euclidean space

R™"  the set of real mxn matrices

“xllz the squared Euclidean norm
. equaling x'x

Yopt the optimal norm of the closed-

loop system

O, (A) the maximal singular value of a

max (

matrix A

[é-‘—g] :=C(sI-A)! B+D = G(s)
CclD

G(s) has a state space

representation (A,B,C,D)

6. Appendix
In this appendix, we will show for
Case 1, indicated in Section 3, the linear

dissipative controller is identical to the

GD controller. Before proving, the
following lemma is needed.
LemmaA.l: If T/ exists, then

T U -1 -1 A _ -1

{ }{T +iA f ef }(a-l)

v ow —-A'f A
where, A =W - VT U, e=T U and
f=vr
Proof:

The GD controller in [10] is given

as
A| B
Koo () = = é} (a-2)
where
A= A+ BF —BD;'D, (C, +F})) (a-3a)
B=-Z]'L,+Z(B, +L,)D,D;)D (a-3b)
Z,=1-y7Y. X, (a-3c)
é =F _[)bz—llbn(cz +F5) (a'3d)
D="Dnlele(72[_D1||1D|T||1)_| (a_3e)
sz _Dnzz
D,eR"™ .and D, e R**** are matrices
satisfying

D, Dfy =1 =Dy, (y*1 - D,,,D,,,,)™ Dy, (a-4a)
DZTIDZI =1_Dlrlzz(}/z["DnnDle)_l D|112 (a'4b)

F= B:‘ } =—R'[DIC,+B"X_] (a-4¢c)
2
L=[L, L,)=—B,D]+Y.CTIR" (a-4d)
A
FT - LTI Dllll D1I12 0 (a_4e)

LT D LITZ D|121 DIIZZ
Ll o I 0
where R, R, D,., D,, are defined in (8).
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Applying the condition of Case 1 to
(a-3e), we have D=0 and the GD H,
controller can be simplified as:

A= A+BF - BD; D,,(C, + F,) (a-5a)
B=-z71, (a-5b)
C=F, (a-5¢)

Lemma A.1 can be used to expand R and
R~ which are defined in (8). Now,
. ={R+R(DSD@M(D.EDH)R —RDﬁD.zM] (2-6)
~MDLD, R M
R [R’ - R'D, D} (y*Q) D, D R" R’DI,DZI(WQ)]
(r*QD, DR’ r'Q
where R, M, @ were defined in (9).
Plugging (a-6) into (a-4c~e), we have the
following:
F, =—R[DL(DLC, +C)+B] X, (a-7a)
F, = M{(D],D,,RBT - B) X, + D}y(D,,RD], - 1C,1(a-7b)
L = ~(B,D}y + Y.C)[R" - R" Dy, D,(r Q)

Dy Df\R"1=(B,D}, + Y.C3 (7 Q) D D\ R” (@-7¢)
L,= [Y/-l(czT _CITDIIRDZTI)_ BlRD2T| 12 (a‘7d)
where

Y, =yr (a-7e)

From (a-4d), we can see that
F .
[0 1][%‘} =F,, ie., D,F =F, (a-7f)
12

Substituting the expressions from (a-7) into
(a-5), we have the following
B=-zI'L,=-(I-Y'X_)"'[l¥;(C] -
CITDHRDzrl)_B1RDzT| 10 =B,
C=F, =M[D},(D,,RD}, ~1)C, +
(DszDnRBlT _B;)Xw] =Cy
A= A+BF -BD]D, (C, +F,)
=A+B\F, +B,F, +ka);: [_bzl(cz +F)l
=A+B,Cy _BIR[DITI(DIZCK +C1)+31TXN]
+B{~C, + D, R[D](D,,Cy +C)+B/ X ]}
=4, (a-8¢)

(a-8a)

(a-8b)

where K, := (A;, By, C;) is the v -
dissipative controller given in (12). Thus,

the proof is completed.
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