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Model-Reference Neural
Predictive Controller Design
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Abstract

The paper presents a model-reference neural predictive controller design for a class of
single-input single-output nonlinear systems with known time-delay. The control law is
developed based on the minimization of a cost function with the model reference scheme and
the neural-network-based predictive performance criterion. A real-time adaptive control
algorithm, including a neural predictor and a model-reference neural predictive controller, is
proposed. Simulation results reveal that the proposed controller gives satisfactory tracking and
disturbance rejection performance for some illustrative discrete-time nonlinear time-delay

systems.
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1. INTRODUCTION

Generalized predictive control (GPC)
has been extensively used for industrial
applications, and the theories and design
techniques using GPC have been well
documented in [1-5]. In many industrial
processes they usually exhibit various time-
delay and nonlinear dynamical phenomena,
and such complicated systems may not be
easily controlled by the use of linear GPC
method. Recently, neural networks have been
widely used as modeling tools as well as
controllers for a class of nonlinear systems
[6-10]. Khalid et al. [6] developed a
feedforward multilayer neural controller for
an MIMO furnace and compared its
performance with other advanced controllers.
Piche et al. [7] established a neural-network-
based technique for constructing nonlinear
dynamic models from their empirical input-
output data. Zhu. et al. [8] developed a
robust nonlinear predictive control with
neural network compensator. Song et al. [9]
explored a nonlinear predictive control with
its application to a manipulator with flexible
forearm, and their nonlinear predictive
controller was designed on the basis of a
neural network plant model using the
control

receding-horizon approach.

Furthermore, Tan et al. [10] presented

neural-network-based d-step-ahead
predictors for a class of nonlinear systems
with time-delay. Ren et al. [11] proposed
generalized certainty equivalence adaptive
model reference control for a comprehensive
theory of stochastic adaptive filtering,
control and identification. A simple recurrent
neural network-based adaptive predictive
control for nonlinear systems was proposed
by Lietal. [12].

This paper will develop a novel model-
reference neural predictive control for a class
of SISO nonlinear time-delay systems, in
which the neural-network-based predictors
and controllers are constructed by using the
well-known multilayer feedforward
networks. The feasibility and effectiveness of
the proposed method will be verified through
its applications to two nontrivial nonlinear
plants. The remainder of the paper is
outlined as follows. Section 2 describes how
to construct a multi-step neural predictor for
a class of nonlinear time-delay systems. A
model reference neural predictive control
law is derived based on the previous neural
predictor in Section 3. A real-time adaptive
control algorithm is proposed in Section 4.
Section 5 details the capabilities of the

proposed control method utilizing computer

simulations. Section 6 concludes this paper.
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2. NEURAL MODEL

The section is devoted to developing the
neural predictor for a class of discrete-time,
single-input single-output nonlinear plants
discussed in [13]. These systems are assumed
to have plant inputs as , plant outputs as , and
the nonlinear mappings , and , . Furthermore,
represents the time delay of the systems.
Generally speaking, such systems can be
described by the following nonlinear
autoregressive moving averaging (NARMA)
models with time-delays

30 = =1, s (k=my), uk—d), -, uk—n,). (1)
The well-known multilayer feedforward
neural-networks architecture has been adopted
to approximate the nonlinear systems
described in [14,15]. In the sequel, this type of
neural network model (NNM) will be trained
to learn the nonlinear mapping f(*) by using
the input vector
vk-n,) 1] (2)
where the NNM has a two-layer perceptron

x(b) =[utk—d) - utk-n,) yk-1) -
network with n, inputs, n hidden units, and an
output variable. y (k) denotes the output of the
NNM, and wU(k) and wj_(k) stand for the
weighting values between the input layer and
hidden layer, and the hidden layer and output
layer, respectively. The NNM has the

following input/output mapping relationship

k)= _Z’]W,f(kﬁ[ﬁ Wg,-(k>x,-<k>] 3)
j= i=

where T(n=1/(+e?) ,m=n,+n,—d+2
, and x (k) represents the ith entry of the input
vector for the NNM. To update the weights
W,»,-(k) and w;(k) of the multilayer feedforward
we define

networks, the following

performance criterion

I =3 b - 560 4

Therefore, the weights can be
recursively adjusted in order to reduce the
cost function J(k) to its minimum value by
the gradient descent method, and the weights

are updated by

Wk+1) =W (k) -1 :%)) ®)

where 7 is a positive learning rate, and

aJ(k)/ow (k) can be calculated as follows;

JE) (5o ‘ ) = Sl (o)
awj(k)*(y(") YOIy (), (k) E(w,,(k)x,m) (6)
k) e

2O Gtk - v (k) ————x. (k 7
aw; (k) HCR )(I_Fefh,(k) 25 ® M

3.MODEL-REFERENCE NEURAL
PREDICTIVE CONTROL

This section is devoted to developing a
model-reference neural predictive controller
(NPC) for improving tracking performance
and disturbance rejection abilities of the
SISO nonlinear control systems (1). The
control law is derived so as to minimize the

following cost function

RCEE ﬁd(Am O k) -5k + ) (8)
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where y“(k) is an output signal of the selected
reference model, and v>4 . The reference
model denotes

G =2 00} 2B, ™)/ 4, )

where r(k) is an input reference

Ny

signal, 4,ch=1-az'—-a,z" and
B,(z")=by+bz " +--+b, 27" Note that G, (")

is assumed an asymptotically stable

system and G, (™) =1 .
z=1
In order to design the proposed method,
we construct the model-reference neural
predictive controller using the multilayer
feedforward neural-networks architecture,
and use a different input vector as

X0 =tk =1 yky - ylk—n,+1) 1] . )

The controller is mathematically expressed

by  uh)= %V,<k>r[§vi,~(k)xf(k)] (10

=i
where v, (k) and Vi (k) are the weighting
values for the NPC between the input layer
and the hidden layer, and the hidden layer
and the output layer, respectively.
Furthermore, mi:ny+2 and X (k) represents
the ith entry of the input vector for the NPC.
The controller's weights with positive
learning rates 77_are updated by the dynamic
backpropagation algorithm as below

V41 =V(k) -, Le® 1)

205
With Eqs. (8) and (11), we

. N -1 ~
define et =24, Hk+p-5t+p)  and

p=d

obtain

aJ (k) de, (k)
R TIT (12)

Let u)=uk+1)=--=uk+N). Then as k)/ov)

can be obtained from

(k) =[

3 (4, 150k + )y G+ )
) m u

p=d

- Ni: (B =yt + )y Gk + p)]r(g L) (13)
p2

aJ . (k) _ N TN
e [pgd(Am(z Y3k + Pk + p)
N-d ~
-3 (B 7tk + p)y (ke + p)]V,» (G0 x, ) (14)
Z

where

~hy(k+p)

Yulk+ p)= X0,k + p)

7w (k+p)
J=1

(1o

hy(k+p)= ;‘l(w,,-(k+p>x,<k+p))

5 Q) m,
G)=———, g,0=X (v (00X, 0)).

(1)

4. REAL-TIME ADAPTIVE
CONTROL ALGORITHM

To make the controller exhibit adaptive
characteristics, we include the neural
predictor and controller in the control loop,
and propose the following real-time model-
reference adaptive neural predictive control
algorithm.

Step 1) Select set-points r(k) .

Step2) Set d,n,n,N,n,m,n,7m_,A(z),

B (z').
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Step 3) Off-line train neural predictor and
NPC.

Step 4) Measure the system output .

Step 5) On-line learn neural predictor and
NPC.

Step 6) Compute the control signal u(k).

Step 7) Output u(k) to the controlled plant.

Step 8) Repeat steps 4-7.

5. COMPUTER SIMULATIONS

The objectives of the following
simulations are to explore the feasibility and
effectiveness of the neural predictive control
for the underlying two nonlinear systems.
The simulation studies also include
investigation of the effects of constant load
disturbances on the performance of the
proposed controller.

Example 1: The following modified
nonlinear system is taken from a model in
[16], and given by
(k) = 0.0125+0.9831y(k — 1) +0.0853u(k —2)

0.0288y(k — u(k —2) +0.0176y(k — 1) u(k - 3) .
The simulation was performed for a time-
varying reference input r(k), some

parameters given by

1, 0<k<400
r(k) =
0, 400 <k <800

N=10, n=0.1, p.=1, nj=m;=10
-1\ _ -1 -1\ _
Ap(zH=1-09"", B,z"H=01.

Figs. 1 and 2 show the response and

control signal of the model-reference
adaptive neural predictive control under set-
point changes. We observe in Fig. 1 that the
proposed controller is capable of giving an
excellent set-point tracking performance.

In order to investigate disturbance
rejection ability of the proposed controller
with load disturbances, we let the

mathematical model be perturbed to

(k) = 0.0125+0.9831y(k — 1) + 0.0853u(k — 2)

0.0288y(k — Du(k —2) +0.0176y(k — )% u(k - 3) + £(k)

0.02, 200 <k <600
0, otherwise.

where &) = {

Fig. 3 depicts the simulation result for
the proposed controller with the load
disturbances. Consequently, the model-
reference adaptive neural predictive
controller demonstrated a good disturbance

rejection capability.
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Fig. 1. Set-point tracking simulation result for the

model-reference neural predictive controller
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Fig. 3. Simulation result for the controller in the

presence of load disturbances

Example 2: The following modified
nonlinear system is modified from [12], and

described by

y(k-1

. +5u(k —6)+u(k—7)
1+y2(k-1)

y(k)=
The simulation was conducted for a
time-varying reference input r(k), and the

parameters given by

I, 0<k<200

r(ky={ 1 200<k=<400 01 . =0.001, n;=m; =10
I, 400<k <600 s

-1, 600<k <800

N=10, A4,(z"Y)=1-09z"1, B,(z")=01.

Figs. 4 and 5 show the response and
control signal of the model-reference neural
predictive controller under set-point changes.
Fig. 4 reveals that the proposed controller is
capable of giving a much better setpoint
tracking performance in comparison with the
result controlled by the method given in [12].

In order to explore the effect of load
disturbance on the performance of the
proposed controller, we add an external load
change for the system, that is,

y(k) = (k=1 /(1+ y2 (k= 1)) + Su(k = 6) + u(k = 7)+ E(k)
where ¢ (k)=-0.2 at 300<k<500 and & (k)=-
0.1 at k2500 . Fig. 6 depicts the simulation
result for the proposed controller with the

external load.

6. CONCLUSIONS

This paper has presented a systematic design
methodology for developing a model-
reference neural predictive control for a class
of nonlinear SISO systems with time-delay.
The proposed controller is composed of a
multi-step-ahead predictor and a model-
reference neural predictive controller. The
set-point tracking and load disturbance
rejection capabilities of the proposed method
can be improved by adjusting the parameters

in the criterion function.
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Fig. 4. Set-point tracking simulation result using the

model-reference neural predictive controller

‘ig. 6. Simulation tracking result using the controller i

the presence of the load changes

The proposed control algorithm has
been successfully applied to achieve tracking
and regulation performance specifications

for two illustrative nonlinear systems.

Through computer simulations results, the
proposed method has been proven useful and
effective under the conditions of set-point

and load changes.
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