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Abstract 
 Chaos synchronization of general Lorenz, Lü, and Chen chaotic systems by using active 

control and nonlinear control is studied in this paper. Active control method based on Hurwitz 

stability criterion with pole-placement scheme and nonlinear control based on Lyapunov 

stability theory are introduced to design controller to synchronize two identical chaotic systems. 

We demonstrate that a coupled general Lorenz, Lü, and Chen chaotic systems can be 

synchronized. Numerical simulations are used to show the effectiveness of the proposed control 

method.  
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廣義勞倫茲系統之渾沌同步 

  

陳恒輝、江俊顯、林永隆、李青一 

 

摘  要 
本文是利用主動控制與非線控制兩種方法對廣義勞倫茲(Lorenz, Lü, and Chen)渾沌

系統作渾沌同步控制。主動控制方法是依據 Hurwitz 穩定法則及極點安置規劃來設計控制

器，而非線控制方法是依據李雅普若夫(Lyapunov)穩定法則來設計控制器。使用這兩種控

制方法，我們可以設計渾沌控制器，使得兩個渾沌系統可以做同步運動。另外我們也將

作數值模來驗證控制器的效果。 
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1.Introduction 
Since Pecora and Carroll introduced a 

method [1] to synchronize two identical 

chaotic systems with different initial 

conditions, chaos synchronization, as a very 

important topic in nonlinear science, has been 

developed extensively in the last few years 

[2-9]. Many scientists have been attracted to 

investigate chaos synchronization in various 

fields including secure communications, 

optics, chemical and biological systems, etc. 

During the last decades, many methods have 

been successfully applied to chaos 

synchronization such as linear feedback 

control [2], adaptive control [3-4], 

backstepping design [5], active control [6-7], 

and nonlinear control [8-9], etc.  

The aim of this paper is to apply active 

control and nonlinear control to synchronize 

two identical general Lorenz, Lü, and Chen 

chaotic systems. This paper organized as 

follows: In Section 2 the controlled system 

model is described. In Section 3 we apply 

active control to achieve chaos 

synchronization of two identical chaotic 

systems and numerical simulations are used to 

show this process. In Section 4 we apply 

nonlinear control to achieve chaos 

synchronization of two identical chaotic 

systems and numerical experiments are used 

to show such synchronization. Finally, the 

conclusions of this paper are briefly stated. 

2.Design of controller 
 Consider a chaotic system in the form of 

 )(xAxx f+=&                 (1) 

where nR∈x  is the state vector, nnR ×∈A  

are matrices of system parameters, and  

is a continuous nonlinear function. Eq. (1) is 

considered as a drive system. The 

corresponding controlled response system is 

given by 

)(xf

 uyAyy ++= )(f&             (2) 

where  denotes the state vector of the 

response system and u  is a nonlinear 

stabilizing state feedback controller to be 

designed later.  

nR∈y

 From (1)-(2), the error dynamics can be 

obtained in the form of 
 uexAee ++= ),(h& ,           (3) 

where xye −=  is the state error vector, 

)()(),( xexex ffh −+=  and . 

The aim of synchronization is to make 

∞→t

0)0,( =xh

lim 0||)(|| =te . In this paper, we introduce 

active control and nonlinear control methods 

based on the exact linearization approach to 

design controller to synchronize two identical 

chaotic systems.  

In active control method, we can choose 
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vexu +−= ),(h  to cancel the nonlinear 

function . This cancellation results in 

a linear system 

),( exh

 .                   (4) vAee +=&

Thus, the stabilization problem for the 

nonlinear system has been reduced to a 

stabilization problem for a controllable linear 

system. Now apply the linear state feedback 

control  and design a matrix K to 

assign the eigenvalues of (A-K) to desired 

locations in the open left-half complex plane, 

i.e., (A-K) is Hurwitz. Then the states of 

response system and drive system are 

synchronized asymptotically globally. 

Kev −=

In nonlinear control method, we can 

choose wexu +−= ),(h  to cancel the 

nonlinear function . This cancellation 

also results in a linear system as Eq. (4). 

Based on Lyapunov stability theory, when 

controller w makes that Lyapunov error 

function 

),( exh

eee TV 2
1)( =  is a positive function 

and its derivative of  is a negative 

function, the synchronization of two identical 

general Lorenz, Lü, and Chen chaotic systems 

from differential initial conditions is 

achieved. 

)(eV

3.Synchronization of two 
identical chaotic systems 

3.1 Design of controller via active 

control method 

Consider the unified chaotic systems 

described by  
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(5) 

where ]1,0[∈θ . As θ  changes 

continuously from 0 to 1, the system remains 

continuously to be chaotic. System (5) is 

considered as a drive system called the 

general Lorenz, Lü, and Chen system as 

)8.0,0[∈θ , 8.0=θ , ]1,8.0(∈θ , 

respectively. 

The corresponding controlled response 

system is given by 
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(6) 

where  are nonlinear 

stabilizing state feedback controller. 

Subtracting Eqs. (5) from (6), we get the 

following error dynamical system: 

321 and, uuu
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where  

are the tracking error states. 
123122121 ,, zzeyyexxe −=−=−=

In this study, we rewrite system (7) in 

the form 

 
 ueAee ++= ),(xh&             (8) 

where , Teee ],,[ 321=e vexu +−= ),(h , 

and 
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According to the feedback linearization 

approach, we choose  to 

cancel the nonlinear function  and to 

impose a desired linear dynamics. This 

cancellation results in a linear system 

vexu +−= ),(h
),( exh

 

 .               (9) vAee +=&

 Assuming that the parameters of the 

drive and response systems are known and the 

states of both systems are measurable. Thus, 

the stabilization problem for the nonlinear 

system has been reduced to a stabilization 

problem for a controllable linear system. Now 

apply the linear state feedback control 

 and design a matrix K to assign 

the eigenvalues of (A-K) to desired locations 

in the open left-half complex plane, i.e., (A-K) 

is Hurwitz. Then the states of response system 

and drive system are synchronized 

asymptotically globally. 

Kev −=

There are many possible choices for the 

control v. Let us design K to assign the 

eigenvalues of (A-K) at –1, -1, and –1. The 

gain matrix K is given by 
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3.2 Design of controller via 
nonlinear control method 

In this case study, the error dynamics of 

the system is also in the same form as Eq. (8). 

we choose wexu +−= ),(h  to cancel the 

nonlinear function  and to impose a 

linear dynamics. 

),( exh
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where , and Twww ],,[ 321=w
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Take a Lyapunov function candidate as 

 
 eee TV 2
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We get the time derivative of the 

Lyapunov function (11) is 

3322113
2

2
221
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(12) 

Select 

21 )1038( ew θ−−= , 22 29 ew θ−= , 

. 0=w3

Then 

 
. )(2)3/)8()1025( 2

3
2
2

2
1 eVV eee −≤+−+−= − θθ&

                            (13) 

Therefore, tT eVVt 2
2
12

2
1 )0()(||)(|| −≤=≤ eeee , 

implying that synchronization of the derive 

response systems is achieved and the state 

error e converges to the origin with a rate of 

at least -1. 

4.Numerical results 
The numerical simulations are carried 

out as shown in Fig. 1-5. In these numerical 

simulations, the fourth-order Runge-Kutta 

method is used to solve the system. The initial 

values of the drive system and response 

system are taken as 

1)0(,1)0(,1)0( 111 === zyx , 

15)0(,17)0(,10)0( 222 =−=−= zyx , 

respectively. When 1,8.0,0=θ , the system 

(5) has Lorenz, Lü, and Chen chaotic 

attractors as shown in Fig. (1)-(3), 

respectively. Fig. (4) shows the 

synchronization error of two identical systems 

at 1=θ  will converge to zero after applying 

active control at 25=t . Fig. (5) shows the 

synchronization error of two identical systems 

at 1=θ  will converge to zero after applying 

nonlinear control at 10=t . So we can see 

that two identical chaotic systems from 

different initial values are indeed achieving 

chaos synchronization by using active control 

and nonlinear control. 

5.Conclusion 
 This paper demonstrates that chaos in 

general Lorenz, Lü, and Chen systems can be 

controlled using active control and nonlinear 

control. The simulation results show that the 

states of two identical systems are 

synchronized asymptotically globally. 
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Fig. 1. The Lorenz attractor of the 

  chaotic system (5) at 0=θ . 
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Fig. 2. The Lü attractor of the chaotic    

system (5) at 8.0=θ . 
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Fig. 3. The Chen attractor of the chaotic 

system (5) at 1=θ . 
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Fig. 4. Synchronization errors of two  

    identicalchaotic systems (8) at 1=θ . 
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Fig. 5. Synchronization errors of two 

identical chaotic systems (10) at 

1=θ . 
 

 

 


