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Abstract 

In this work, we develop and examine an optimization-based reconstruction scheme, 
which may estimate simultaneously the distribution of the extinction coefficient, the 
scattering albedo and the phase function of a three-dimensional inhomogeneneous medium.  
The forward radiative transfer problem with a complete scattering model is solved by a 
modified discrete-ordinate method.  The inverse problem is formulated as a least square 
problem that minimizes the discrepancy between the measured and the calculated leaving 
radiative fluxes; the Levenberg-Marquardt algorithm is applied to the least square problems.  
From the results obtained, we found that the error caused by the estimated albedo does not 
result in the increase of error to the estimated extinction coefficient.  For three-dimensional 
cases, when energy dissipation from both ends and property variation in z-direction for 
radiation intensity are not considerable, using the two-dimensional algorithm in place of the 
three-dimensional algorithm to reconstruct the radiative properties may generate accurate 
enough results and may save much computational time.  The discrepancies between the 
estimated and exact values of the extinction coefficient and the scattering albedo increase 
with the increase of the measurement error, while the reconstructed coefficients of the 
expanded phase functions are less sensitive to the measurement error. 
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I. INTRODUCTION 
Optical tomography has wide 

applications in many areas[1-3, 6, 14, 16, 
17] because it can provide estimates of the 
radiative properties of a scattering medium 
from boundary measurements of light 
leaving the medium.  Among the light 
transport models employed by the optical 
tomography, the diffuse approximation is 
one of the most popular.  The optical 
tomography based on the diffuse 
approximation is called diffuse optical 
tomography (DOT).  The DOT is very 
successful in clinical applications [3,16], 
especially optically thick, strongly 
scattering cases.  However, the DOT does 
not hold when the medium under 
consideration is not optically thick or 
includes low scattering regions. 

To overcome the disadvantages of 
the DOT, several inverse schemes based on 
more rigorous light transport models have 
been developed.  Yuen et al. [17] applied 
a generalized zonal method to estimate the 
extinction coefficient and the scattering 
albedo of a two-dimensional medium.  
Jiang [7] developed an inverse scheme 
based on higher-order diffusion 
approximations.  Ripoll et al. [13] studied 
a radiosity-diffusion approach for media 
with non-scattering regions.  Hill et al. [4] 
have presented a � -Eddington variant of 

the diffuse approximation which could be 
improved to apply to the cases of both 
highly absorbing and highly scattering 
medium.  Klose and Hielscher [8] 
reconstructed the scattering and absorption 
coeffiecients of a two-dimensional 
rectangular medium by solving the 
discrete-ordinate formulation of the 
transport forward model.  Recently, Ou 
and Wu [11] developed an 
optimization-based reconstruction scheme, 
in which the foeward problem is solved by 
a modified discrete-ordinate method 
(MDOM) (Liou and Wu[9]).  Their results 
show that the scheme can reconstruct 
accurate enough radiative properties of a 
scattering medium even for the cases with 
moderate optical sizes or low scattering.  
However, most of the cases they considered 
are two-dimensional.   

In this work, we further examine the 
optimization-based reconstruction scheme 
for various three-dimensional cases with a 
complete scattering model.  We also 
consider the application of a 
two-dimensional scheme reconstructing the 
radiative properties by using the measured 
data at a specific plane of the 
three-dimensional model.  The 
two-dimensional scheme takes much less 
computer time than the three-dimensional 
scheme, and so the performance of the 
application of the two-dimensional scheme 



 

 

to three-dimensional problem is worthy to 
examine.   

II. ANALYSIS 
To estimate the three-dimensional 

distributions of unknown radiative 
properties for a tubrid medium, we 
consider radiative transfer in an absorbing 
and scattering cylindrical cold medium 
with a transparent boundary exposed to a 
collimated beam, as shown in Fig. 1(a).  
The propagation direction of the radiation 
intensity at a point ) , ,( zr �  can be 

specified by ),( �� x , which are the angles 

between the propagation direction of 
radiation and a Cartesian coordinate, as 
shown in Fig. 1(b).  Here, r , �  and z  

denote the dimensionless coordinate 
r defined as the radial geometrical variable 
divided by the radius 0r , the azimuthal 

angle �  and the dimensionless coordinate 

z  defined as the axial geometrical variable 
divided by the radius 0r , respectively.    

The Boltzmann transport equation (BTE) 
of radiative transfer can be expressed as 

( , , , , )
 

 ( , , , ),
 

( , , , ),

x

x

x

I r z
r

I r z
r

I r z
z

�� � ��
�
� � � ��

� �

� � ��

	

�
	

�
),,,,( ),,( ����
 zrIzr x	  

 2  1

  0   1

( , , ) ( , , )
4

   ( , , , ,  )

   ( , , , , , ,  )

x
x

x x x

r z r z

I r z

r z d d

�

� �

� � 
 �
�

� � �

� � � � � � �

 
� ��

�


 
�


 
 
 
��

� �  

10 �� r , �� 20 �� , 000 rzz ��  

�� 20 �� x , 11 ��� � ,          (1) 

where �  denotes the directional cosine 

defined as )cos(sin ���� �� x , I the 

radiation intensity nondimensionalized by 
the irradiation intensity iI at 1�r , 

i�� �  and izz �  along the direction 

defined by 1���  and 0�� , �  the 

directional cosine defined as 
)sin(sin ���� �� x , �  the directional 

cosine defined as �� cos� , 
  the 

dimensionless extinction coefficient 
defined as os r)( �� 	 , with k  and s�  

denoting the absorption and scattering 
coefficient, respectively, �  the scattering 
albedo defined as )/( ss ��� 	 , and �  

the scattering phase function expressed in 
the form 
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Here, K denotes the order of anisotropic 
scattering, kA  the coefficient of the 

expansion with 10 �A , kP  the kth-order 

Legendre polynominal, and 
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parameters, 
 , �  and � , may vary 

radically, azimuthally and axially.  Here, 
we assume that the particles are spherical, 
and so the phase function is described by 
the angle formed by the direction of 
incident ray and the forward direction of 
the scattered ray ( o� ) only.  The boundary 

condition for this problem can be expressed 
as  

(1, , , , )

1 at  , , 1,  0,
0 otherwise,

x

i i

I z
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Eqs. (1) and (3) form the forward problem. 
Before solving the forward problem, 

we decompose the intensity into the fairly 

diffuse part dI and the collimated part cI  
(Liou and Wu, 1997; Hsu et al., 1998).  
The latter is zero except that 
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By substituting Eqs. (4) and (5) into Eq. (1), 
we obtain the transport equation for dI ,  
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        (6) 
The boundary condition for dI  is 

0),,,,1( ���� x
d zI  

�� 20 �� , 000 rzz �� , 11 ��� � , 

23)(2 ���� ��� x , 

0),,,,( 00 ���� x
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10 �� r , �� 20 �� , 01 ��� � ,    

0),,0,,( ���� x
d rI     10 �� r , 

�� 20 �� , 10 �� � . 

           (7) 
We adopt a DOM scheme (Hsu et al., 

1998) to solve ),,,,( ��� x
d zrI .  The 



 

 

discrete-ordinate approximation of Eq. (6) 
can be expressed as: 
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for 10 �� r , �� 20 �� , 000 rzz �� , 

n=1, 2, …, 
x

N� , m=1,2, …, �M ,   

             (8) 
where the subscripts n and m 

represent the discrete directions, mnw 

,  the 

quadrate weight, the subscripts in , im  
the direction of incident radiation, 

x
N� and 

�M  the numbers of discrete ordinates over 

�� 20 �� x  and 22 ��� ��� , 

respectively.  We divide the whole domain 
into zr NNN �� �  cells, where rN , �N  

and zN  denote the numbers of cells in the 

r, �  and z directions, respectively.  The 

finite-difference approximation of Eq. (8) 
is solved by Gauss-Seidel method.  
Solving the BTE by splitting the radiative 

intensity into the exact cI  and the 
discrete-ordinates approximation of dI  is 
called the modified DOM (Liou and Wu, 
1997). 

To illustrate the reconstruction 
process, we consider radiative transfer in a 
medium composed of two species with 
variable concentrations.  One of the 
species is non-scattering but absorptive, the 
other is both scattering and absorptive.  
For example, the mixture of Intralipid 
solution and India ink. The radiative 
properties of such a medium can be 
described by a variable extinction 
coefficient, a variable scattering albedo and 
a constant phase function.  The unknown 
distributions of the extinction coefficient, 
the albedo and the phase function are 
expressed as 
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respectively.                      (11) 
Now, to reconstruct the radiative properties 
of the medium is equivalent to find the 

coefficients, kÂ , 000a , mnla , mnlb , 000c , 

mnlc  and mnld .    Here, we try to find 

those coefficients by minimizing the 
objective function  
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leaving radiative fluxes in the radial 
direction at the boundary ),,1( z� , 

respectively.  To gain enough information 
for reconstructing the three dimensional 
distribution of radiative properties, we scan 
the incident laser beam around the 
peripheral of medium at �N  locations on 

the same ��r  plane and then proceed 

along the z direction.  At every ��r  

plane we scanned, the incident locations 
are equally spaced by the azimuthal angle 

���' N2� . While the incident radiation 

enters the domain at a different location, 
we measure the other set of the leaving 

radiative fluxes.  1�� zNN�  measured 

data are acquired for every incidence, 
which is equal to  because the incident 
point is excluded.  By iN  times of 

incidences and 1�� zNN�  measured data 

generated for every incidence, 
)1( � ��� zi NNN  measured data can be 

obtained to reconstruct the radiative 
properties.  To determine those unknowns, 
the number of the measured data 

)1( ��� z�i NNN  shall be greater than 

the number of unknowns,  
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The steps of reconstructing radiative 
properties are summarized as follows: 

1. Guess the properties 
̂ , �̂  and �̂  by 

setting parameters 0�mnla , 0�mnlb , 

0�mnlc , 0�mnld  and 0ˆ �kA , except 



 

 

that 1000 �a , 1.0000 �c  and 1ˆ
0 �A . 

2. Solve the forward problem and obtain 

)ˆ,ˆ,ˆ(ˆ ,,21 ��
i
kjNr

q 	  by the DOM. 

3. Find the new estimation of parameters 

mnla , mnlb , mnlc , mnld  and kÂ  by 

minimizing the objective function.  A 
standard least-square optimization 
procedure, the Levenberg-Marquardt 
algorithm (Marquardt, 1963; William et 
al., 1992) is used here. 

4. Stop the iteration, if the two successive 
estimated values of mnla , mnlb , mnlc , 

mnld  and kÂ  meet one of the following 

specified criterions.  Otherwise return 
to step 2 with the newest set of estimated 
parameters. 

The stopping criterions are as 
follows: (i) on two successive iterations 
each of the parameters agrees to 6 digits, (ii) 
on two successive iterations the relative 
difference of the objective functions is less 
than 810� , (iii) the Euclidean norm of the 
approximate gradient of the objective 
function is less than 810� . 

III. RESULTS AND 
DISCUSSION 

The inverse scheme is based on an 
iterative, optimization-based reconstruction 
method that minimizes the discrepancy 
between measured and calculated radiative 

fluxes.  To ensure the accuracy of the 
calculated radiative fluxes, we first 
examine the effects of the numbers of the 
cells and the discrete ordinates on the 
solutions of the forward problem.  The 
extinction coefficient ( 3
 ) and the phase 

function ( f� ) are listed in Table 1.  The 

forward scheme is applied to a typical 
example with 3

 � , f�� � , 5.0�� , 

5.0�iz , 1�A  and 1�H . Figs. 2(a) and 

2(b) show that the distributions of the 
diffuse part of the radiative heat flux ( dq ) 

around the peripheral boundary on the 
�r �  plane and along the line 

( 2 ,1 �� ��r ), respectively.  The 

comparisons show that the results for 
409640 ��  and 204820 ��  cells are in 

good agreement.  Next, we consider the 
other example with the peak-like 
distribution of the extinction coefficient 

2
 , listed in Table 1.  From Figs. 3(a) and 

3(b), the deviation is larger for fewer 
numbers of cell, especially for those 
distributions near the path of incident light. 
The distribution near the incident path may 
cause larger error because of the 
non-uniform character of the collimated 
incidence and the fewer times of scattering.  
Hence, more cells are necessary when the 
distribution of the extinction coefficient 
becomes more non-uniform. 
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Figs. 4 shows the diffuse heat flux 
distributions along z-axis direction at 1�r  
and 2�� �  with the same relevant 

parameters as in Fig. 2(a).  The domain is 
divided into 204820 ����� z�r NNN  

cells.  Evidently, we can get the 
convergent result by increasing the 
numbers of discrete directions.  The 
deviation near the incident path for the case 
of 14 ��� NM  show that fewer times of 
scattering may lead to larger errors and 
more discrete ordinates is necessary. 

Figs. 5(a) and 5(b) show the 
distribution of the diffuse radiative flux 
ratio along the axes at 2  ,1 ��� �r  and 

��� �r   ,1  for three different values of 

albedo.  The domain is divided into 
102410 ����� z�r NNN  cells and 

512 ��� �� MN
x

 discrete ordinates are 

adopted.  The extinction coefficient 1
  

listed in Table 1 is considered with 

f�� � , 5.0�iz , 1�A  and 1�H .  The 

results show the ratios of the diffuse 
radiative flux distributed along the axis 
become larger for larger albedo.  This is 
because that larger albedo means more 
scattering within the medium.  Hence, the 
energy could be transferred easily along the 
axial direction that perpendicular to the 
incident direction.   

Fig. 6 shows the distribution of the 

diffuse radiative fluxes for different optical 
thickness along the axes that are parallel to 
z-axis passed through the points 

2  ,1 ��� �r , ��� �r   ,1  and 

23  ,1 ��� �r , respectively.   At the 

axis 23  ,1 ��� �r , the curve has a higher 

peak for optical by thin case and then drop 
dramatically under the curve of the optical 
by thick case.  Less incident radiation 
absorbed for the optical by thin case and 
the forward scattering aligned with the 
direction of incidence both enforce the 
higher peak.  Away from the incident path, 
the scattered light easily leaves the optical 
by thin medium, so the radiative 
distributions are higher for the optical by 
thick case.  The leaving radiative fluxes 
do not align with the incident direction at 
the other two axes. Thus, the peak and the 
distributions are higher than those of the 
optical thick case.  The results show more 
light scattered flux transfer axially for the 
optically thick case.  

Now, we turn to the inverse problems.  
In the reconstruction process, we rotate the 
incident beam around the peripheral of 
every incident plane and then move along 
z-axis direction axially.  By doing this, at 
every incident we collect the measured dq  

leaving lateral boundary at all grids except 
those at the incident point and the edge 
grids with 0�z  and 00 / rzz � .  The 



 

 

calculated dq  are obtained by solving the 

radiative transfer equation along 
512 ��� �� MN

x
 discrete ordinates and 

divide the domain into 
102410 ����� zr NNN �  cells.  The 

comparisons in Figs. 2-4 have shown that 
for the direct problems the numbers of cells 
and discrete ordinates are enough for 
smooth radiation parameters.  The effects 
of the numbers of cells and discrete 
ordinates will be further examined for the 
inverse problem.  The aspect ratio ( A ) 
and the dimensionless height ( H ) are all 
unity in the following cases.  For the three 
dimensional inverse problem, the incident 
planes are z =0.5, 0.75 and 0.95, 
respectively.  Hence, iN  is equal to 

3��N  and lN  equal to 1�� z� NN . 

To estimate the three-dimensional 
distribution of the extinction coefficient, 
we first consider the case with 3

 � , 

1�� �  and f�� � .  The exact ( 
 ) and 

estimated distributions of the extinction 

coefficient ( 
̂ ) along the x-, y- axis at 

plane 5.0�z  and line ) *z 0, ,2.0  are 

shown in Figs. 7(a), (b) and (c), 

respectively, where the 
̂  is obtained by 

the expansion with 

335ˆˆˆ ����� ��� LNM .  In Fig. 7(a), it 

shows a little deviation for 5.0(x .  The 

reason may be that the distribution of 
  

makes the optical size larger for 5.0(x .  
In Fig. 7(b), the deviation appears near 
incident path because non-uniform 
character of the collimated incidence and 
the fewer times of scattering.  In Fig. 7(c), 
results around both ends (top and bottom) 
show less accurate.  The reasons may be 
attributed to (i) energy dissipation from 
both ends and (ii) abrupt variation due to 
finite length in z-direction for radiation 
intensity near both ends.  Increasing the 
numbers of cells in � -direction up to 48 

could improve the accuracy obviously as 
shown in Figs. 7(a), 7(b) and 7(c), 
respectively. 

To examine the application of the 
two-dimensional inverse scheme to a 
three-dimensional problems, we consider 
an extinction coefficient, 1�� � , which is 

independent of z.  Because the medium is 
finite in the z-direction, this case is still 
three-dimensional.  Hence, we apply both 
the two-dimensional and three-dimensional 
inverse scheme to this case, and examine 
the performance of the two schemes.  We 
first use the three-dimensional forward 
scheme and make the incidence at three 
axial positions, �z 0.5, 0.75 and 0.95.  
By collecting the data around the incident 
planes, we perform the 3-D reconstruction.  
Then, we use measured data at each 
incident plane for the two-dimensional 
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reconstruction of radiation parameters, 
similar to (Ou and Wu, 2002).  Fig. 8(a) 
show the comparison of the exact 1
  and 

the reconstructed results obtained by the 
two-dimensional inverse scheme.  The 
results obtained by using the measured data 
collected at the center boundary ( 5.0�z ) 
of the medium are in good agreement with 
the exact 1
  and more accurate than those 

obtained by using other data.  The results 
get worse, when the incident position 
moving far away from the plane �z 0.5, as 
shown in Fig. 8(a).  This is because more 
radiation escapes from the end of a 
finite-length column although and the 
two-dimensional scheme became less valid 
there.  However, Fig. 8(b) shows that the 
two-dimensional reconstructed results are 
nearly coincide at the center plane ( �z 0.5), 
where the three-dimensional effects are 
weak.   

Next, we consider the simultaneously 
estimation of the spatially variable 
distributions of extinction coefficient 

)( 1

 �  and albedo )( 2�� �  under 

known phase function )( f�� � .  We 

take 35ˆˆ ��� �� NM  and 

335ˆˆˆ ����� 


 LNM  to reconstruct 

these distributions.  Fig. 9(a) shows that 
reconstructed distribution of albedo 
coincides with the exact one.  The results 
shown in Fig. 9(b) show that the 

reconstructed distribution of extinction 
coefficient appears similar distribution of 
discrepancy between the exact and 
estimated s'
  as in Fig. 7(a) and Fig 

8(a).   
To investigate the estimation of �  

further, we consider the case with the same 
size and 
 , but with a less smooth 

distribution of albedo, 3�� � .  Figs. 

10(a) and (b) show the estimated albedo 
along the x- and y-axis, respectively.  
Curves of the estimated albedo have little 
osculation near the points where the exact 
albedo has a discontinuous first order 
derivation.  Figs. 10(c) and 10(d) show 

that the estimated 
̂  are in agreement 

with the exact 
 .  The discrepancies 

between the exact and estimated values of 
s'
  are not larger than those found in the 

case with a smooth albedo (Fig. 9).  
Therefore, the error caused by the 
estimated albedo does not result in the 
increase of error to the estimated extinction 
coefficient. 

The effects of measurement errors on 
the accuracy of the estimation are also 
investigated.  The simulated measured 

leaving radiative fluxes with errors ( iq~ ) 

are obtained by adding normal distributed 
errors to the leaving radiative fluxes 

( iqexact ) obtained by solving the forward 



 

 

problem with a high-order 
( 512 ��� �� MN

x
) scheme and given 

exact 
 , �  and � .  That 

is, )1(~
exact +�	� ii qq ,  (14) 

where �  is the standard deviation of the 
measurement data, and +  is a normal 

distributed random variable with zero mean 
and unit standard deviation.  Finally, we 
consider reconstructing the cases with 

3

 � , 3�� � and f�� �  and the 

values of �  are 0.01 and 0.005, 
respectively.  The reconstructed 
distributions of extinction coefficient and 
albedo along x axis on the plane 5.0�z  
and phase function are shown in Figs. 11(a), 
11(b) and 11(c) respectively.  The results 
reveal that (i) the discrepancies between the 
estimated and exact values of 
  and �  

increase with the increase of the values of 
� , (ii) the reconstructed coefficients of the 
expanded phase functions are less sensitive 
to the measurement error, (iii) the accuracy 
of results of these simultaneously 
estimation cases are acceptable for 

01.0�� . 

IV. CONCLUSIONS 
Property reconstruction for a 

three-dimensional medium with a complete 
scattering model is investigated by solving 
the Boltzmann transport equation and an 
optimization-based reconstruction schemes. 

The forward problem is solved by a 
modified discrete-ordinate method 
(MDOM).  The inverse problem is 
formulated as a least square problem that 
minimizes the discrepancy between the 
measured and the calculated leaving 
radiative fluxes.  The 
Levenberg-Marquardt algorithm is applied 
to the least square problems for a variety of 
cases.  Owing to the minimization of 
objection function is an over-constrained 
problem, we use optical tomography 
method to acquire enough information for 
reconstructing the radiative properties.  
Based on the results obtained, the 
following conclusions can be drawn. 

(i) More discrete directions and more 
cells of the domain are necessary for 
accurate computation, when the 
distributions of radiative properties are 
more non-uniform.  

(ii) For three-dimensional cases, 
when energy dissipation from both ends 
and abrupt variation due to finite length in 
z-direction for radiation intensity are 
considearable, it is not suitable to 
reconstruct the distribution of 
  with a 

two-dimensional algorithm in place of a 
three-dimensional algorithm.  Otherwise, 
using the two-dimensional algorithm in 
place of the three-dimensional algorithm 
may generate accurate enough results and 
save computational time. 
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(iii) When the albedo has a 
discontinuous first order derivation, curves 
of the estimated albedo have little 
osculation, but the error caused by the 
estimated albedo does not result in the 
increase of error to the estimated extinction 
coefficient. 

(iv) The discrepancies between the 
estimated and exact values of 
  and �  

increase with the increase of the 
measurement errors. 

(v) The effects of measurement 
errors on the accuracy of these 
simultaneously estimation cases are 
acceptable for 01.0�� . 
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Table 1. Properties of the media considered 
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