修平科技大學機械工程學系

實務專題論文

仿生學 八桿十接頭仿生馬

指導教授:江俊顯 班 級:四機三丙 組 長:陳建厤 BA100146 組 員:柯岦杰 BA100142 羅慶安 BA100143 董洋銘 BA100901

中華民國一〇三年六月

摘要

本次設計使用連桿合成,來達成馬兒走路的步伐,動力來源使用單顆高 轉速馬達搭配減速齒輪組,進而驅動四隻腳動力桿,連桿使用壓克力製作, 接點使用銷接,並使用扣環固定;使用軟體進行分析,以及數學運算來驗證 實體模型的做動,是否與理論相同。

致謝

畢業設計是對我們在學校教育下的一次全面考核,也是對我們科學研究 打下基本底子,培養我們綜合運用所學知識獨立分析問題與解決問題的能 力。

本次設計能夠順利完成,首先要感謝修平科技大學,提供了學習知識的 環境,使我們在這裡成長,其次要感謝機械工程學院的老師們,教會我們在 專業方面的知識,每有問題,老師們總是耐心的解答,最後要感謝的是默默 一直在我們背後支援的親人。

目錄

第5章 實體製作	27
5.1 工作程序與製作過程	27
第6章 結論與建議	35
6.1 結論	35
6.2 建議	35
参考文獻	36
6.3 運動分析程式	37

圖目錄

圖	1.1 源於蜻蜓翅膀的小型風車	.1
圖	1.2 鋸齒狀葉片	2
圖	1.3 出淤泥而不染-荷葉	2
圖	1.4 1893 年 RYGG 的機械馬	3
圖	1.5 大狗	3
圖	1.6 研究架構流程	.4
圖	1.1 計畫進度管制圖	5
圖	2.1 修平科技大學-組合機器人模組	6
圖	2.2 A THEO JANSEN'S MECHANISM	7
置	2.3 馬走路循環圖	.7
圖	2.4 黄金比例的理想跨越段與支撐段	8
圖	2.5 黄金比例的理想水平寬度與垂直高度	8
置	3 運動鏈目錄	9
圖	3.1 單腳設計離形	10
圖	3.2 單腳設計離形桿號	11
圖	4.1 單支腳向量迴路	13
圖	4.2 向量迴路一	14
置	4.3 向量迴路二	15
圖	4.4 向量迴路三	16
置	4.5 單支腳角度確認	20
置	4.6 動力桿與支撑桿 6 角度關係圖	21
圖	4.7 動力桿與輸出桿角度關係圖	21
圖	4.8 動力桿與支撐桿6角度關係圖	23
圖	4.9 動力桿與輸出桿角速度關係圖	23
置	4.10 支撑段桿 6 與動力桿角加速度關係圖	25
置	4.11 動力桿與輸出桿角加速度關係圖	25
置	4.12 足部軌跡圖	26

啚	4.13 SOLIDWORKS MOTION 軌跡圖	.26
圖	5.1 機構教學器具	.27
圖	5.3 網路查詢資料	.28
圖	5.5 學術分析圖	.29
圖	5.6 實體加工照片	.29
圖	5.7 鑽孔加工圖	.30
圖	5.8 材料與零件圖	.30
圖	5.9 組裝圖	.31
圖	5.10 再次微加工	.31
圖	5.12 齒輪用雕刻機鑽 D1 的孔	.32
置	5.13 仿生機構馬組裝完成圖	.33

表目錄

表 4	桿件尺寸表	11
表 4	四次疊代過程	20
表 5	零件表	34
表 5	史使用工具表	34

符號說明

J單接頭數目

L	獨立迴路數
Ν	桿件數目
f_i	第i個方程式
f'	方程式之導數
<i>x</i> ₀	初始值
x_{n+1}	下一個 x 軸座標交點
$ heta_i$	桿件尺寸向量方向角
$\Delta \theta_i$	向量方向角修正值
$rac{\partial}{\partial heta_i'}$	對桿件尺寸向量方向角偏微分
ε _i	桿件角度誤差值
ω_i	桿件角速度
\propto_i	桿件角加速度
$\vec{r_l}$	桿件向量

第1章 緒論

1.1 前言

上帝巧手遇上人類科技,人是如何要與上帝做抵抗呢?

仿生科技:來自大自然的下一波工業革命,拜現今網路資訊爆炸時代,偶 然看上大自然與現今科技比較,大黃蜂的空氣動力原理勝過一架七四七客機、 貝殼能讓晶片避免過熱、蝴蝶的翅膀顏色可以降低全球 80%照明電費,跳蚤 膝蓋及蜜蜂胸背板幫助科學家們配製出一種近乎完美的膠囊、葉子的太陽能 板、蜥蜴生物學為本發現的治命醫藥突破、到仿製鯊魚皮的抗菌塗料。仿生 學或者稱為生物啟發科技,是一種應用仿效大自然經驗,解決人類問題的高 科技,動植物在漫長的進化過程中獲得了適合生存的能力,其中隱藏著我們 想不到的機制,從這些先進的機制和構造中獲得靈感,就是仿生學,現今奈 米技術的進步,使的人工再現係為構造成為可能,其應用範圍正在不斷增大, 合法的從自然界中剽竊。

圖 1.1 源於蜻蜓翅膀的小型風車

蜻蜓體型小、飛行速度慢。從流體力學的角度來看,表示慣性力與黏性力之 比的雷諾係數較小,也就是說,空氣的黏性力處於支配狀態。從蜻蜓的角度來看, 就像是在黏綢的液體中飛行。

club.china.com/data/thread/3677/2712/66/63/6_1.html

圖 1.2 鋸齒狀葉片

最簡單型的,但也是應用範圍廣大的其中一種,容易切割的葉子邊緣

圖 1.3 出淤泥而不染-荷葉

將荷葉表面構造應用不沾水之特性的浴室,防水效果極佳;現代生活隨手 可見仿生科技,且大多小而輕巧,實用性極高,不得不重視。

1.2 製作動機

時代的變遷,現今代步工具千百種,路上的大多皆是機與電的組合;目 前最常見的交通工具,機械腳踏車、汽車、腳踏車而言,皆是動力傳自輪胎 進行行走;但是,輪胎有很大的限制條件,如,輪胎是利用輪胎表面與地表 面摩擦產生推力,若遇到摩擦較小,則難以行駛,通常只限於有開發的道路, 否則輪胎容易受損,或者無法行駛。然而,常見人或是狗、貓、牛、馬卻可 輕鬆誇越而過,有適應崎嶇地形能力,因此逐漸受到重視。

針對四腿步行機構的研究,最早申請專利的為 1893 年由 Rygg 所創作的步行機器馬(圖 1),但是 Rygg 並沒有實際的製作出來;

圖 1.4 1893 年 Rygg 的機械馬

近年最成功的應該屬於美國軍方,製造出的四足機器人-大狗(圖 1.5),主 要應用於戰場上的補給。這隻機器人的感官來自於陀螺儀和其他的感測器幫 助平衡行走,隨時調整自己的步伐,突然踹他還能保持平衡。

圖 1.5 大狗

資料蒐集 仑 概念設計 £ 可行性初步分析 1 機械馬設計 仑 向量迴路分析 仑 程式設計 Ŷ 運動分析 動畫模擬 Û 實體製作

圖 1.6 研究架構流程

1.4 時間進度管制

本專題研究內容共分為資料收集及研究、概念設計、機械馬設計、程式 設計、運動分析、實體製作、專題撰寫等 7 項,各工作項目時程進度如下圖 所示。

圖 1.1 計畫進度管制圖

1.5 工作分配

組長:概念設計、機械馬設計、程式設計、運動分析、專題撰寫、組裝。 組員:資料收集及研究、實體製作、專題撰寫、PPT報告撰寫、報告。

第2章 概念設計

2.1 前言

機構的創造是依賴設計者的直覺與經驗,在構想設計階段機械設計師所 面臨的困難為設計構想的創造;在構想設計階段時,一個所欲設計之機構的一 些功能需求可以轉換構造特性,做為創造的主要源頭來發展機構圖集,再使 用圖論、組合分析及電腦演算搭配電腦動畫來修正,得到可行之機構,以供 尺寸合成、分析、最佳化...等等。

2.2 現有機構參考

參考修平科技大學機械工程學系內的機構教學器具及荷蘭藝術家:泰奧陽 森(荷蘭語:Theo Jansen)做為啟發,機構教學器具有以下兩種行為,前後、前後 左右,可左右式的是搭配輔助輪馬達遙控而造成兩邊速度不同達到可左右, 並非使用機構達成,故可參考性的只有前後型;泰奧陽森則是不具備輔助輪即 可行走,動力角以120度位差操控三對腳進而行走。

圖 2.1 修平科技大學-組合機器人模組

圖 2.2 A Theo Jansen's mechanism

2.3 足部軌跡特性

設計步行機器,其足部的運動方式、行為是首要的重要條件, 跑、跳、 行走、慢走並不是加快動力角即可達成的,姿勢仍須調整,此次的設計為行 走,由圖 2.3 馬走路循環圖可得條件如下:

- 1. 所產生的軌跡必須封閉,且不交叉,應為一循環的動作。
- 2. 足部軌跡的垂直高度不能太低。
- 3. 足部軌跡的水平段越長越好,搭配垂直高度可增加跨步距離。

下圖為馬走路循環圖,LH:左後腳;LF:左前腳;RH:右後腳;RF:右前腳, 黑點表示腳著地,白點離地,黑線連接著地黑點.

圖 2.4 黄金比例的理想跨越段與支撐段

圖 2.5 黃金比例的理想水平寬度與垂直高度

第3章 設計

3.1 前言

參照拓樸構造圖 3[機構學顏鴻森、吳隆庸 2005],從書中圖 2-15 (8,10)運 動鏈目錄中選擇一種作為基礎設計發展,其中圖 3.1.1 圈選為此次設計所選擇 的運動鏈。

圖 3 運動鏈目錄

利用 SolidWorks 將其各桿件嘗試組合而成,並利用 SolidWorks Motion 進行初步軌跡分析,不斷的合成後可得圖 3.1 單腳設計離形,其中設計者將板 1 連接 4 及 5 的接頭合為同接頭。

圖 3.1 單腳設計雜形

圖 3.2 為桿號設定及表 4.1 尺寸大小。

圖 3.2 單腳設計雛形桿號

表 4.1 桿件尺寸表

桿號	尺寸	桿號	尺寸
1	15	9	45
2	53.19	10	60
3	42.66	11	45
4	60	12	70
5	40	13	110
6	45	14	60
7	50	桿 2 與 x 軸角度	4.85Deg
8	30	桿3與X軸角度	10.13Deg

單位:mm

第4章 運動分析

4.1 前言

由運動學知,想知道物體之運動狀態,必須先知位置,將位置對時間微分可得速度,在對時間微分可得加速度;再以數學技巧解決問題(1.微積分 2.向量),由運動學的條件可分出以下幾點:

1. 運動:指一觀測者在物體上來觀測其他物體的位置變化。

- 2. 參考體:觀測者所在之物體,即為參考體。
- 3. 相對於固定參考體的運動,稱為絕對運動。

利用數學技巧向量分析解決,必須先建立一組座標系,其座標系的表示 共有以下幾種:

- 1. 卡式直角坐標。
- 2. 切線法線座標。
- 3. 極座標。
- 4. 圓柱座標。
- 5. 球座標。

此次的分析,將使用第一種卡式直角坐標,其中位置、位移、速度、加速度與座標系無關,r會因為參考點不同而不同,但Δr與參考點無關,與參考 體有關。

4.2 向量迴路分析

本章以向量迴路法[顏,2006]作為分析工具,將各桿件定義上向量如圖 4.1 單支腳向量迴路,其中了為輸入桿並做等速度運動,了與了為固定桿作為機架, 因為四腿機構皆相同,只是輸入桿間有相位角的差異,因此只分析單一腳的 機構。

圖 4.1 單支腳向量迴路

一個機構的獨立迴路數,可由下式求得[Paul, 1979]:

L = J - N + 1

(1)

其中,L為獨立迴路數,J為單接頭的數目,N為桿件的數目。

對於八桿十接頭的機構而言,J=10、N=8,所以根據式(1)可得到三個獨立 迴路數(L = 10 - 8 + 1)。

圖 4.2 向量迴路一

迴路一:
$$\overrightarrow{r_1} + \overrightarrow{r_7} + \overrightarrow{r_5} - \overrightarrow{r_2} = 0$$
 (2)

如圖 4.2 所示,將(2)分解成 x 與 y 方向兩個純量方程式,並將包含未知數 θ_5 與 θ_7 的項留在左邊,其餘已知的部分留在右邊,可得:

$$-r_5 \cos\theta_5 - r_7 \cos\theta_7 = r_1 \cos\theta_1 - r_2 \cos\theta_2 \tag{3}$$

$$-r_5 \sin\theta_5 - r_7 \sin\theta_7 = r_1 \sin\theta_1 - r_2 \sin\theta_2 \tag{4}$$

其中, θ_1 為輸入變數, θ_2 為常數。

圖 4.3 向量迴路二

迴路二: $\overrightarrow{r_3} + \overrightarrow{r_5} - \overrightarrow{r_6} - \overrightarrow{r_8} = 0$ (5)

如圖 4.3 所示,將(5)分解成 x 與 y 方向兩個純量方程式,並將包含未知數 $\theta_5 \times \theta_6 \oplus \theta_8$ 的項留在左邊,其餘已知的部分留在右邊,可得:

 $-r_5 cos\theta_5 + r_6 cos\theta_6 + r_8 cos\theta_8 = r_3 cos\theta_3 \tag{6}$

$$-r_5 \sin\theta_5 + r_6 \sin\theta_6 + r_8 \sin\theta_8 = r_3 \sin\theta_3 \tag{7}$$

其中, $\theta_3 = \theta_2 - 14.98°$ 為常數。

圖 4.4 向量迴路三

迴路二: $\vec{r_7} + \vec{r_8} + \vec{r_9} + \vec{r_{12}} - \vec{r_{10}} - \vec{r_{13}} = 0$ (8) 如圖 4.4 所示,將(8)分解成 x 與 y 方向兩個純量方程式,並將包含未知數 $\theta_7 \times \theta_8 \times \theta_{12} 與 \theta_{13}$ 的項留在左邊,其餘已知的部分留在右邊,可得:

 $r_{7}cos\theta_{7} + r_{8}cos\theta_{8} + r_{9}cos\theta_{9} - r_{10}cos\theta_{10} + r_{12}cos\theta_{12} - r_{13}cos\theta_{13} = 0 \quad (9)$ $r_{7}sin\theta_{7} + r_{8}sin\theta_{8} + r_{9}sin\theta_{9} - r_{10}sin\theta_{10} + r_{12}sin\theta_{12} - r_{13}sin\theta_{13} = 0 \quad (10)$ 其中, $\theta_{9} = \theta_{6} - 83.62^{\circ} \cdot \theta_{10} = \theta_{7} - 47.22^{\circ}$ 為相依變數。

4.4 位置分析

本次使用的數值分析為 Newton Raphson Method,如下列形式

$$f(x_0) = (x_0 - x) \cdot f'(x_0) \tag{11}$$

 $\langle \theta_5' \times \theta_6' \times \theta_7' \times \theta_8' \times \theta_{12}' \times \theta_{13}' \rangle \beta \beta \theta_5 \times \theta_6 \times \theta_7 \times \theta_8 \times \theta_{12} \times \theta_{13}$ 的起始估 值, $\varepsilon_1 \times \varepsilon_2 \times \varepsilon_3 \times \varepsilon_4 \times \varepsilon_5 \times \varepsilon_6$ 為分量方程式的誤差值,可得誤差值和微分如下:

$$f_1 = \varepsilon_1 = r_1 \cos\theta_1 - r_2 \cos\theta_2 + r_5 \cos\theta_5' + r_7 \cos\theta_7'$$
(12)

$$f_2 = \varepsilon_2 = r_1 \sin\theta_1 - r_2 \sin\theta_2 + r_5 \sin\theta_5' + r_7 \sin\theta_7'$$
(13)

$$f_3 = \varepsilon_3 = r_3 \cos\theta_3 + r_5 \cos\theta_5' - r_6 \cos\theta_6' - r_8 \cos\theta_8' \tag{14}$$

$$f_4 = \varepsilon_4 = r_3 \sin\theta_3 + r_5 \sin\theta_5' - r_6 \sin\theta_6' - r_8 \sin\theta_8' \tag{15}$$

$$f_{5} = \varepsilon_{5} = r_{7}cos\theta_{7}' + r_{8}cos\theta_{8}' + r_{9}cos\theta_{9}' - r_{10}cos\theta_{10}' + r_{12}cos\theta_{12}' - r_{13}cos\theta_{13}'$$

$$f_{6} = \varepsilon_{6} = r_{7}sin\theta_{7}' + r_{8}sin\theta_{8}' + r_{9}sin\theta_{9}' - r_{10}sin\theta_{10}' + r_{12}sin\theta_{12}' - r_{13}sin\theta_{13}'$$

$$(16)$$

$$\begin{split} \frac{\partial f_1}{\partial \theta'_5} &= -r_5 sin\theta'_5 \, \cdot \, \frac{\partial f_1}{\partial \theta'_6} = 0 \, \cdot \, \frac{\partial f_1}{\partial \theta'_7} = -r_7 sin\theta'_7 \, \cdot \, \frac{\partial f_1}{\partial \theta'_8} = 0 \, \cdot \\ \frac{\partial f_1}{\partial \theta'_{12}} &= 0 \, \cdot \, \frac{\partial f_1}{\partial \theta'_{13}} = 0 \end{split}$$

$$\frac{\partial f_2}{\partial \theta'_5} = r_5 cos \theta'_5 \cdot \frac{\partial f_2}{\partial \theta'_6} = 0 \cdot \frac{\partial f_2}{\partial \theta'_7} = r_7 cos \theta'_7 \cdot \frac{\partial f_2}{\partial \theta'_8} = 0 \cdot \frac{\partial f_2}{\partial \theta'_{12}} = 0 \cdot \frac{\partial f_2}{\partial \theta'_{13}} = 0$$

$$\frac{\partial f_3}{\partial \theta'_5} = -r_5 \sin\theta'_5 \cdot \frac{\partial f_3}{\partial \theta'_6} = -r_6 \sin\theta'_6 \cdot \frac{\partial f_3}{\partial \theta'_7} = 0 \cdot \frac{\partial f_3}{\partial \theta'_8} = -r_8 \sin\theta'_8 \cdot \frac{\partial f_3}{\partial \theta'_{12}} = 0 \cdot \frac{\partial f_3}{\partial \theta'_{13}} = 0$$

$$\frac{\partial f_4}{\partial \theta_5'} = r_5 cos \theta_5' \cdot \frac{\partial f_4}{\partial \theta_6'} = r_6 cos \theta_6' \cdot \frac{\partial f_4}{\partial \theta_7'} = 0 \cdot \frac{\partial f_4}{\partial \theta_8'} = -r_8 cos \theta_8' \cdot \frac{\partial f_4}{\partial \theta_{12}'} = 0 \cdot \frac{\partial f_4}{\partial \theta_{13}'} = 0$$

$$\frac{\partial f_5}{\partial \theta'_5} = 0 \cdot \frac{\partial f_5}{\partial \theta'_6} = -r_9 sin\theta'_9 \cdot \frac{\partial f_5}{\partial \theta'_7} = -r_7 sin\theta'_7 + r_{10} sin\theta'_{10} \cdot \frac{\partial f_5}{\partial \theta'_8} = -r_8 sin\theta'_8 \cdot \frac{\partial f_5}{\partial \theta'_{12}} = -r_{12} sin\theta'_{12} \cdot \frac{\partial f_5}{\partial \theta'_{13}} = r_{13} sin\theta'_{13}$$

$$\frac{\partial f_6}{\partial \theta'_5} = 0 \cdot \frac{\partial f_6}{\partial \theta'_6} = r_9 cos \theta'_9 \cdot \frac{\partial f_6}{\partial \theta'_7} = -r_7 cos \theta'_7 - r_{10} cos \theta'_{10} \cdot \frac{\partial f_6}{\partial \theta'_8} = r_8 cos \theta'_8 \cdot \frac{\partial f_6}{\partial \theta'_{12}} = r_{12} cos \theta'_{12} \cdot \frac{\partial f_6}{\partial \theta'_{13}} = -r_{13} cos \theta'_{13}$$

其中
$$\theta'_9 = \theta'_6 - 83.62^{\circ} \circ \theta'_{10} = \theta'_7 - 47.22^{\circ} \circ$$

使用數值分析法 Newton Raphson Method,可得線性聯立方程式為:

$$-\varepsilon_1 = (-r_5 \sin\theta_5')\Delta\theta_5 - (r_7 \sin\theta_7')\Delta\theta_7 \tag{18}$$

$$-\varepsilon_2 = (r_5 \cos\theta_5')\Delta\theta_5 + (r_7 \cos\theta_7')\Delta\theta_7 \tag{19}$$

$$-\varepsilon_3 = (-r_5 \sin\theta_5')\Delta\theta_5 - (r_6 \sin\theta_6')\Delta\theta_6 - (r_8 \sin\theta_8')\Delta\theta_8$$
(20)

$$-\varepsilon_4 = (r_5 \cos\theta_5')\Delta\theta_5 + (r_6 \cos\theta_6')\Delta\theta_6 - (r_8 \cos\theta_8')\Delta\theta_8$$
(21)

$$-\varepsilon_5 = (-r_9 \sin\theta'_9)\Delta\theta_9 - (r_7 \sin\theta'_7)\Delta\theta_7 + (r_{10} \sin\theta'_{10})\Delta\theta_{10}$$

$$-(r_8 \sin\theta_8')\Delta\theta_8 - (r_{12} \sin\theta_{12}')\Delta\theta_{12} + (r_{13} \sin\theta_{13}')\Delta\theta_{13}$$
(22)

$$-\varepsilon_{6} = (r_{9}cos\theta'_{9})\Delta\theta_{9} + (r_{7}cos\theta'_{7})\Delta\theta_{7} - (r_{10}cos\theta'_{10})\Delta\theta_{10} + (r_{8}cos\theta'_{8})\Delta\theta_{8} + (r_{12}cos\theta'_{12})\Delta\theta_{12} - (r_{13}cos\theta'_{13})\Delta\theta_{13}$$
(23)

以矩陣表示如下:

$-r_5 sin \theta_5'$	0	$-r_7 sin\theta_7$	0	0	0	$\left[\Delta\theta_{5}\right]$		$-\mathcal{E}_1$	
$r_5 cos \theta_5$	0	$r_7 cos \theta_7$	0	0	0	$\Delta \theta_{\rm 6}$		$-\varepsilon_2$	
$-r_5 sin \theta_5'$	$-r_6 s in \theta_6$	0	$-r_{_8}sin\theta_{_8}$	0	0	$\Delta \theta_7$	_	- <i>E</i> 3	
$r_5 cos \theta_5$	$r_6 cos \theta_6$	0	$-r_8\cos\theta_8$	0	0	$\Delta \theta_{\rm s}$	_	$-\mathcal{E}_4$	
0	$-r_9sin\theta_9$	$-r_7 sin\theta_7' + r_{10} sin\theta_{10}'$	$-r_{_8}sin\theta_{_8}$	$-r_{12}sin\theta_{12}$	$r_{13}sin\theta_{13}$	$\Delta \theta_{12}$		- <i>E</i> 5	
0	r₅cosθ9	$r_7 \cos\theta_7 - r_{10}\cos\theta_{10}$	$r_{s}cos\theta'_{s}$	$r_{12}\cos\theta_{12}$	$-r_{13}cos\theta'_{13}$	$\Delta \theta_{13}$		$-\varepsilon_6$	

解上述線性聯立方程式,可得 θ'_{5} 、 θ'_{6} 、 θ'_{7} 、 θ'_{8} 、 θ'_{12} 、 θ'_{13} 的正值 $\Delta \theta_{5}$ 、 $\Delta \theta_{6}$ 、 $\Delta \theta_{7}$ 、 $\Delta \theta_{8}$ 、 $\Delta \theta_{12}$ 、 $\Delta \theta_{13}$ 。將 θ'_{5} 、 θ'_{6} 、 θ'_{7} 、 θ'_{8} 、 θ'_{12} 、 θ'_{13} 的估計值可分別修正為:

$$\theta_{5(new)}^{'} = \theta_{5}^{'} + \Delta \theta_{5}$$
(24)

$$\theta_{6(new)}' = \theta_{6}' + \Delta \theta_{6}$$
(25)

$$\theta_{\gamma(new)}' = \theta_{\gamma}' + \Delta \theta_{\gamma}$$
(26)

$$\theta'_{8(new)} = \theta'_{8} + \Delta \theta_{8}$$
⁽²⁷⁾

$$\theta'_{12(new)} = \theta'_{12} + \Delta \theta_{12}$$
 (28)

$$\theta'_{13(new)} = \theta'_{13} + \Delta \theta_{13}$$
 (29)

接著,使用 Matlab 設計一套程式,針對輸入桿位置, $\theta_1 = 0^{\circ} \sim 360^{\circ}$,計算出 修正值 $\Delta\theta_5 \times \Delta\theta_6 \times \Delta\theta_7 \times \Delta\theta_8 \times \Delta\theta_{12} \times \Delta\theta_{13}$,求出新的估計值 $\theta'_5 \times \theta'_6 \times \theta'_7 \times \theta'_8 \times$ $\theta'_{12} \times \theta'_{13}$,直到 $\Delta\theta_5 \times \Delta\theta_6 \times \Delta\theta_7 \times \Delta\theta_8 \times \Delta\theta_{12} \times \Delta\theta_{13}$ 絕對值小於 0.01 為止,且 每隔 1 進行一次位置分析,起始估計值利用圖 3.1 單腳設計雛形進行估計, 每次修改度數不超過 10 、 $\Delta\theta_5 \times \Delta\theta_6 \times \Delta\theta_7 \times \Delta\theta_8 \times \Delta\theta_{12} \times \Delta\theta_{13}$ 收斂為止,並且 使用 SolidWorks 進行確認角度無誤,估計值 $\theta_5 = 79^{\circ} \times \theta_5 = 79^{\circ} \times \theta_6 = 60 \times$ $\theta_7 = -23^{\circ} \times \theta_8 = -13^{\circ} \times \theta_{12} = 268^{\circ} \times \theta_{13} = -30^{\circ}$,常數 $\theta_2 = 4.85^{\circ}$,其中先 使用 $\theta_1 = 261^{\circ}$ 進行確認,以下表格為四次疊代過程,角度位置確認:

表 4.2 四次疊代過程

次數	1	2	3	4
$\theta_{5(new)}$	-2.5141	0.0108	0	0
θ_5	76.4859	76.4967	76.4967	76.4967
$\theta_{6(new)}$	0.2558	-0.0114	0	0
θ_6	60.2558	60.2444	60.2443	60.2443
$\theta_{7(new)}$	-0.1001	0.0447	0	0
θ_7	-23.1011	-23.0564	-23.0564	-23.0564
$\theta_{8(new)}$	-1.7562	0.0680	0	0
θ_8	-14.7562	-14.8242	-14.8242	-14.8242
$\theta_{12(new)}$	-0.4301	0.0137	-0.0023	0
θ_{12}	267.5699	267.5836	267.5813	267.5813
$\theta_{13(new)}$	-2.1984	0.0302	-0.0028	0
θ_{13}	-32.1984	-32.1682	-32.1710	-32.1710

單位:Deg

疊代四次後完美修正,進行 SolidWorks 確認如圖 4.5 單支腳角度確認:

圖 4.5 單支腳角度確認

針對支撐段進行 $\theta_1 = 0^{\circ} \sim 360^{\circ}$ 位置分析,如圖 4.6:

圖 4.6 動力桿與支撐桿 6 角度關係圖

針對輸出桿進行 $\theta_1 = 0^{\circ} \sim 360^{\circ}$ 位置分析,如圖 4.7:

圖 4.7 動力桿與輸出桿角度關係圖

4.5 角速度分析

將(3)、(4)、(6)、(7)、(9)、(10)迴路純量方程式中的變數,分別對時間微分,即可得到角速度分析之值如下:

$$-r_5 \sin\theta_5 \cdot \omega_5 - r_7 \sin\theta_7 \cdot \omega_7 = r_1 \sin\theta_1 \cdot \omega_1 - r_2 \sin\theta_2 \cdot \omega_2 \tag{30}$$

$$r_5 cos\theta_5 \cdot \omega_5 + r_7 cos\theta_7 \cdot \omega_7 = -r_1 cos\theta_1 \cdot \omega_1 + r_2 cos\theta_2 \cdot \omega_2 \tag{31}$$

$$-r_5 \sin\theta_5 \cdot \omega_5 + r_6 \sin\theta_6 \cdot \omega_6 + r_8 \sin\theta_8 \cdot \omega_8 = r_3 \sin\theta_3 \cdot \omega_3 \tag{32}$$

$$r_5 cos\theta_5 \cdot \omega_5 - r_6 cos\theta_6 \cdot \omega_6 - r_8 cos\theta_8 \cdot \omega_8 = -r_3 cos\theta_3 \cdot \omega_3 \tag{33}$$

$$-r_9 sin\theta_9 \cdot \omega_9 - r_7 sin\theta_7 \cdot \omega_7 + r_{10} sin\theta_{10} \cdot \omega_{10} - r_8 sin\theta_8 \cdot \omega_8 - r_{12} sin\theta_{12} \cdot \omega_{12} + r_{13} sin\theta_{13} \cdot \omega_{13} = 0$$

$$(34)$$

$$r_{9}cos\theta_{9} \cdot \omega_{9} + r_{7}cos\theta_{7} \cdot \omega_{7} - r_{10}cos\theta_{10} \cdot \omega_{10} + r_{8}cos\theta_{8} \cdot \omega_{8} + r_{12}cos\theta_{12} \cdot \omega_{12} - r_{13}cos\theta_{13} \cdot \omega_{13} = 0$$

$$(35)$$

以矩陣表示之:

0

$$\begin{bmatrix} -r_{5}sin\theta_{5} & 0 & -r_{7}sin\theta_{7} & 0 & 0 & 0 \\ r_{5}cos\theta_{5} & 0 & r_{7}cos\theta_{7} & 0 & 0 & 0 \\ r_{5}sin\theta_{5} & -r_{6}sin\theta_{6} & 0 & -r_{8}sin\theta_{8} & 0 & 0 \\ r_{5}cos\theta_{5} & r_{6}cos\theta_{6} & 0 & -r_{8}cos\theta_{8} & 0 & 0 \\ 0 & -r_{9}sin\theta_{9} & -r_{7}sin\theta_{7} + r_{10}sin\theta_{10} & -r_{8}sin\theta_{8} & -r_{12}sin\theta_{12} & r_{13}sin\theta_{13} \\ 0 & r_{9}cos\theta_{9} & -r_{7}cos\theta_{7} - r_{10}cos\theta_{10} & r_{8}cos\theta_{8} & r_{12}cos\theta_{12} & -r_{13}cos\theta_{13} \end{bmatrix} \begin{bmatrix} \omega_{5} \\ \omega_{6} \\ \omega_{7} \\ \omega_{8} \\ \omega_{12} \\ \omega_{13} \end{bmatrix}$$
$$= \begin{bmatrix} r_{1}sin\theta_{1} \cdot \omega_{1} - r_{2}sin\theta_{2} \cdot \omega_{2} \\ -r_{1}cos\theta_{1} \cdot \omega_{1} + r_{2}cos\theta_{2} \cdot \omega_{2} \\ r_{3}sin\theta_{3} \cdot \omega_{3} \\ 0 \end{bmatrix}$$

其中 ω_1 為常數,並做等轉速運動 $\omega_1 = 1$,且 $\omega_5 \cdot \omega_6 \cdot \omega_7 \cdot \omega_8 \cdot \omega_{12} \cdot \omega_{13}$ 為 未知數, $\omega_9 = \omega_6 \cdot \omega_{10} = \omega_7$ 。 針對支撐段進行 $\theta_1 = 0^{\circ} \sim 360^{\circ}$ 角速度分析,如圖 4.8:

圖 4.8 動力桿與支撐桿 6 角度關係圖

針對輸出桿進行 $\theta_1 = 0^\circ \sim 360^\circ$ 角速度分析,如圖 4.9:

圖 4.9 動力桿與輸出桿角速度關係圖

4.6 角加速度分析

將(30)、(31)、(32)、(33)、(34)、(35)迴路純量方程式中的變數,分別對時間微分,即可得到角加速度分析之值如下:

$$\begin{aligned} &-r_{5}cos\theta_{5}\cdot\omega_{5}^{2}-r_{7}cos\theta_{7}\cdot\omega_{7}^{2}-r_{5}sin\theta_{5}\cdot\alpha_{5}-r_{7}sin\theta_{7}\cdot\alpha_{7} = \\ &r_{1}cos\theta_{1}\cdot\omega_{1}^{2}-r_{2}cos\theta_{2}\cdot\omega_{2}^{2}+r_{1}sin\theta_{1}\cdot\alpha_{1}-r_{2}sin\theta_{2}\cdot\alpha_{2} \end{aligned} (36) \\ &-r_{5}sin\theta_{5}\cdot\omega_{5}^{2}-r_{7}sin\theta_{7}\cdot\omega_{7}^{2}+r_{5}cos\theta_{5}\cdot\alpha_{5}+r_{7}cos\theta_{7}\cdot\alpha_{7} = r_{1}sin\theta_{1}\cdot\omega_{1}^{2}-r_{2}sin\theta_{2}\cdot\omega_{2}^{2}-r_{1}cos\theta_{1}\cdot\alpha_{1}+r_{2}cos\theta_{2}\cdot\alpha_{2} \end{aligned} (37) \\ &-r_{5}cos\theta_{5}\cdot\omega_{5}^{2}-r_{6}cos\theta_{6}\cdot\omega_{6}^{2}-r_{8}cos\theta_{8}\cdot\omega_{8}^{2}-r_{5}sin\theta_{5}\cdot\alpha_{5}-r_{6}sin\theta_{6}\cdot\alpha_{6}-r_{8}sin\theta_{8}\cdot\alpha_{8}=r_{3}cos\theta_{3}\cdot\omega_{3}^{2}+r_{3}sin\theta_{3}\cdot\alpha_{3} \end{aligned} (38) \\ &-r_{5}sin\theta_{5}\cdot\omega_{5}^{2}-r_{6}sin\theta_{6}\cdot\omega_{6}^{2}+r_{8}sin\theta_{8}\cdot\omega_{8}^{2}+r_{5}cos\theta_{5}\cdot\alpha_{5}+r_{6}cos\theta_{6}\cdot\alpha_{6}-r_{8}cos\theta_{8}\cdot\alpha_{8}=r_{3}cos\theta_{3}\cdot\omega_{3}^{2}-r_{3}cos\theta_{3}\cdot\alpha_{3} \end{aligned} (39) \\ &-r_{9}cos\theta_{9}\cdot\omega_{9}^{2}-r_{7}cos\theta_{7}\cdot\omega_{7}^{2}+r_{10}cos\theta_{10}\cdot\omega_{10}^{2}-r_{8}cos\theta_{8}\cdot\omega_{8}^{2}-r_{12}cos\theta_{12}\cdot\omega_{12}^{2}+r_{13}cos\theta_{13}\cdot\omega_{13}^{2}-r_{9}sin\theta_{9}\cdot\alpha_{9}-r_{7}sin\theta_{7}\cdot\alpha_{7}+r_{10}sin\theta_{10}\cdot\alpha_{10}-r_{8}sin\theta_{8}\cdot\alpha_{8}-r_{12}sin\theta_{12}\cdot\alpha_{12}+r_{13}sin\theta_{13}\cdot\alpha_{13}=0 \end{aligned}$$

$$-r_{9}sin\theta_{9} \cdot \omega_{9}^{2} + r_{7}sin\theta_{7} \cdot \omega_{7}^{2} + r_{10}sin\theta_{10} \cdot \omega_{10}^{2} - r_{8}sin\theta_{8} \cdot \omega_{8}^{2} - r_{12}sin\theta_{12} \cdot \omega_{12}^{2} + r_{13}sin\theta_{13} \cdot \omega_{13}^{2} + r_{9}cos\theta_{9} \cdot \alpha_{9} - r_{7}cos\theta_{7} \cdot \alpha_{7} - r_{10}cos\theta_{10} \cdot \alpha_{10} + r_{8}cos\theta_{8} \cdot \alpha_{8} + r_{12}cos\theta_{12} \cdot \alpha_{12} - r_{13}cos\theta_{13} \cdot \alpha_{13} = 0$$

以矩陣表示之:

$$\begin{bmatrix} -r_{5}sin\theta_{5} & 0 & -r_{7}sin\theta_{7} & 0 & 0 & 0 \\ r_{5}cos\theta_{5} & 0 & r_{7}cos\theta_{7} & 0 & 0 & 0 \\ -r_{5}sin\theta_{5} & -r_{6}sin\theta_{6} & 0 & -r_{8}sin\theta_{8} & 0 & 0 \\ r_{5}cos\theta_{5} & r_{6}cos\theta_{6} & 0 & -r_{8}cos\theta_{8} & 0 & 0 \\ 0 & -r_{9}sin\theta_{9} & -r_{7}sin\theta_{7} + r_{10}sin\theta_{10} & -r_{8}sin\theta_{8} & -r_{12}sin\theta_{12} & r_{13}sin\theta_{13} \\ 0 & r_{9}cos\theta_{9} & -r_{7}cos\theta_{7} - r_{10}cos\theta_{10} & r_{8}cos\theta_{8} & r_{12}cos\theta_{12} & -r_{13}cos\theta_{13} \end{bmatrix} \begin{bmatrix} r_{1}cos\theta_{1}\cdot\omega_{1}^{2} - r_{2}cos\theta_{2}\cdot\omega_{2}^{2} + r_{1}sin\theta_{1}\cdot\alpha_{1} - r_{2}sin\theta_{2}\cdot\alpha_{2} + r_{5}cos\theta_{5}\cdot\omega_{5}^{2} + r_{7}cos\theta_{7}\cdot\omega_{7}^{2} \\ r_{5}sin\theta_{7}\cdot\omega_{1}^{2} - r_{5}cos\theta_{7}\cdot\omega_{2}^{2} - r_{5}cos\theta_{7}\cdot\alpha_{7} + r_{5}cos\theta_{7}\cdot\omega_{7}^{2} + r_{5}sin\theta_{7}\cdot\omega_{7}^{2} + r_{5}sin\theta_{7}\cdot\omega_{7}^{2} \end{bmatrix}$$

$$= \begin{bmatrix} r_{1}sin\theta_{1} \cdot \omega_{1}^{2} - r_{2}sin\theta_{2} \cdot \omega_{2}^{2} - r_{1}cos\theta_{1} \cdot \alpha_{1} + r_{2}cos\theta_{2} \cdot \alpha_{2} + r_{5}sin\theta_{5} \cdot \omega_{5}^{2} + r_{7}sin\theta_{7} \cdot \omega_{7}^{2} \\ r_{3}cos\theta_{3} \cdot \omega_{3}^{2} + r_{3}sin\theta_{3} \cdot \alpha_{3} + r_{5}cos\theta_{5} \cdot \omega_{5}^{2} + r_{6}cos\theta_{6} \cdot \omega_{6}^{2} + r_{8}cos\theta_{8} \cdot \omega_{8}^{2} \\ r_{3}sin\theta_{3} \cdot \omega_{3}^{2} - r_{3}cos\theta_{3} \cdot \alpha_{3} + r_{5}sin\theta_{5} \cdot \omega_{5}^{2} + r_{6}sin\theta_{6} \cdot \omega_{6}^{2} - r_{8}sin\theta_{8} \cdot \omega_{8}^{2} \\ r_{9}cos\theta_{9} \cdot \omega_{9}^{2} + r_{7}cos\theta_{7} \cdot \omega_{7}^{2} - r_{10}cos\theta_{10} \cdot \omega_{10}^{2} + r_{8}cos\theta_{8} \cdot \omega_{8}^{2} + r_{12}cos\theta_{12} \cdot \omega_{12}^{2} - r_{13}cos\theta_{13} \cdot \omega_{13}^{2} \\ r_{9}sin\theta_{9} \cdot \omega_{9}^{2} - r_{7}sin\theta_{7} \cdot \omega_{7}^{2} - r_{10}sin\theta_{10} \cdot \omega_{10}^{2} + r_{8}sin\theta_{8} \cdot \omega_{8}^{2} + r_{12}sin\theta_{12} \cdot \omega_{12}^{2} - r_{13}sin\theta_{13} \cdot \omega_{13}^{2} \end{bmatrix}$$

因為 $\omega_1 = 1$ 做等轉速運動所以 α_1 為零,,且 $\alpha_5 \cdot \alpha_6 \cdot \alpha_7 \cdot \alpha_8 \cdot \alpha_{12} \cdot \alpha_{13}$ 為未 知數,其中 $\alpha_9 = \alpha_6 \cdot \alpha_{10} = \alpha_7$ 。

針對支撐段進行 $\theta_1 = 0^{\circ} \sim 360^{\circ}$ 角加速度分析,如圖 4.10:

圖 4.10 支撐段桿 6 與動力桿角加速度關係圖

針對輸出桿進行 $\theta_1 = 0^\circ \sim 360^\circ$ 角加速度分析,如圖 4.11

圖 4.11 動力桿與輸出桿角加速度關係圖

4.7 軌跡圖

根據設計條件,腿部機構之足部軌跡曲線必須為一簡單無交點之封閉曲線,圖 4.12 足部軌跡圖為設計完後的樣式:

圖 4.12 足部軌跡圖

與 SolidWorks Motion 進行比較如圖 4.13 SolidWorks Motion 軌跡圖:

圖 4.13 SolidWorks Motion 軌跡圖

第5章 實體製作

5.1 工作程序與製作過程

1、研究啟發與範例來源,參考修平科技大學機械工程學系內的機構教學器具

圖 5.1 機構教學器具

2、機構學術相關資料查詢,仿生科技、四足機器人、足部軌跡特性等,於網路和書籍資料作篩選與整理

圖 5.2 網路查詢資料

3、網路查詢材料種類,分析、排除與選定,考慮製作成本、加工方式…等因素最終結果,選擇以壓克力做為整體架構

圖 5.3 網路查詢資料

4、查詢壓克力店家,與材料購買

圖 5.4 店家位置圖

5、Matlab 學術分析與立定實物架構

圖 5.5 學術分析圖

6、於學校 B0110 實習工廠做實體加工,運用銑床銑削壓克力,以達構想尺寸

圖 5.6 實體加工照片

7、依照機構分析位置,進行鑽孔程序

圖 5.7 鑽孔加工圖

8、統合及整理所有零件與材料

圖 5.8 材料與零件圖

9、仿生馬試組與調整位置

圖 5.9 組裝圖

10、再次微加工與修改,調整其鑽孔位置,使其四足活動時更加流暢

圖 5.10 再次微加工

11、齒輪軸心插銷孔位置加工

圖 5.11 軸心用雕刻機鑽 D1 的孔

12、齒輪插銷孔位置加工

圖 5.12 齒輪用雕刻機鑽 D1 的孔

13、最後組裝完成圖

圖 5.13 仿生機構馬組裝完成圖

零件名稱、規格。		數量₽
壓克力條 8*10*40↔		4條↔
壓克力條 8*10*50↓		4條↔
壓克力三角板 8*10*145↔		4 塊+)
壓克力三角板8*10*110↔		4塊+1
壓克力塊 12*10*25↔		4 塊 √
壓克力板 30*8*235 ↔		2 片 ↩
ф		¢₽
直鋪 D4*40↔		数支+
直銷 D4*30↔		数支↓
直銷 D4*15↔		数支↓
螺絲↔		數個↔
螺帽↩		數個↔
整月も		数月+1
C型璩↓		數個↔
ц.		ц.
<u>強磁馬達組 FF-180PH+</u>		1 組+
(含10凿主軸齿輪、馬達座及自攻螺絲)↔		4
雙層冠齒輪 鬆配 2mm 軸芯,大 24 凿,小 10 凿↔		1 個 ↔
雙層平齒輪 鬆配 2mm 軸茲,大 30 歯,小 10 歯↔		6 個↔
單層平齒輪 繁配 2mm 軸答,30 齒↔		1個↔
萬用塑膠條 長 153mm, 寬 7mm, 高 7mm↔		4條↔
•••••拉100x2mm 長 100mm,直徑 2mm√		2 支≁
軸芯 30x2mm 長 30mm,直徑 2mm↔		6 支≁
2mm 固定環	4	20個↔
4.2cm 塑膠車輪 直徑 4.2公分,厚 1.8公分↔ ↩		4 個♥

表 5.1 零件表

表 5-2 使用工具表

使用工具名稱	規格
鑽床	
鑽頭	D1.5 \ D2 \ D4
銑床	
立體雕刻機 MAX-40A	
尖嘴鉗	
C型環夾緊工具	
六角扳手	

第6章 結論與建議

6.1 結論

經過這次八連桿仿生機構馬的製作中,我們發現機構其實是一門很深的 學問,為了決定製作的尺寸大小及避免完成後出現不協調的問題,因此我們 決定先用 SolidWorks 進行分析,然後再進行製作,但是在進行作動軌跡的分 析及製作實體時都發現了的許多要考慮及克服的問題,像是機構的跨步距離 是否會影響運動的平衡、各機件間是否會造成干涉或是固定的銷是否會有偏 移現象,驅動部分的要克服問題是馬達選用是否能順利帶動整個機構的運作 以及齒輪組間的打滑造成空轉的解決辦法,都要花費許多心思。

6.2 建議

經過這次專題製作發現過程中為了考量成本的支出,因此在選擇使用零 件及材料的討論上花了不少時間,所以在此有個的建議,希望學校方面能在 補助專題製作的經費上做些調整,以便往後學生們在製作專題時能使用較好 的材料來製作出完整性更高的成品。

參考文獻

- 1. Paul,B.,Kinematics and Dynamics of planar Machinery, Prentrice- Hall,New York,1979.
- 2. 機構學 / 顏鴻森, 吳隆庸著. 初版民國九十五年
- 3. 機構學 / Robert L. Norton 著, 謝慶雄譯. 初版民國九十三年
- 4. 機構設計 / Lung-Wen Tsai 原著;許正和編譯初版民國九十二年
- 洪青芝,混合八連桿型步行機器馬之機構設計,碩士論文,國立成功大學 機械工程學系,民國九十一年
- 洗燥文,八連桿型機器馬之機構設計,碩士論文,國立成功大學,民國八 十八年
- 7. http://en.wikipedia.org/wiki/Newton's_method
- 8. <u>http://blog.sina.com.tw/green_viewpoint/article.php?entryid=614046</u>
- 9. <u>http://andyeee.blogspot.tw/2010/12/blog-post_17.html</u>
- 10. http://www.youtube.com/watch?v=CufN43By79s
- 11. http://www.fotobeginner.com/8801/compose-a-photo-1/
- 12. http://www.businessweekly.com.tw/KBlogArticle.aspx?ID=1499&pnumber=1
- 13. <u>http://zh.wikipedia.org/wiki/%E9%BB%84%E9%87%91%E5%88%86%E5%8</u> 9%B2%E7%8E%87

附錄

6.3 運動分析程式

本次使用的程式為 Matlab, 以下為程式碼:

```
clc
clear all
rad=pi/180;
r1=15;r2=53.19;r3=42.66;r4=60;r5=40;r6=45;r7=50;r8=30;r9=45;r10=60
;r11=45;r12=70;r13=110;
a=83.62*rad;b=47.22*rad;c=14.98*rad;
for i=1:361
t1=i-1;
t1=t1*rad;
t2=4.85*rad;t5=79*rad;t6=60*rad;t7=-23*rad;t8=-13*rad;t12=268*rad;
t13=-30*rad;
for k=1:4
t9=t6-a;t10=t7-b;t3=t2-c;
f1=r1*cos(t1)+r7*cos(t7)+r5*cos(t5)-r2*cos(t2);
f2=r1*sin(t1)+r7*sin(t7)+r5*sin(t5)-r2*sin(t2);
f3=r3*\cos(t3)+r5*\cos(t5)-r6*\cos(t6)-r8*\cos(t8);
f4=r3*sin(t3)+r5*sin(t5)-r6*sin(t6)-r8*sin(t8);
f5=r7*cos(t7)+r8*cos(t8)+r9*cos(t9)+r12*cos(t12)-r10*cos(t10)-r13*
\cos(t13);
f6=r7*sin(t7)+r8*sin(t8)+r9*sin(t9)+r12*sin(t12)-r10*sin(t10)-r13*
sin(t13);
a11=-r5*sin(t5);
                   a13=-r7*sin(t7);
                   a23=r7*cos(t7);
a21=r5*cos(t5);
                   a32=r6*sin(t6);
                                     a34=r8*sin(t8);
a31=-r5*sin(t5);
                   a42=-r6*cos(t6); a44=-r8*cos(t8);
a41=r5*cos(t5);
                   a53=-r7*sin(t7)+r10*sin(t10); a54=-r8*sin(t8);
a52=-r9*sin(t9);
a55=-r12*sin(t12); a56=r13*sin(t13);
                   a63=r7*cos(t7)-r10*cos(t10); a64=r8*cos(t8);
a62=r9*cos(t9);
a65=r12*cos(t12);
                   a66=-r13*cos(t13);
A=[a11 0 a13 0 0 0;a21 0 a23 0 0 0;a31 a32 0 a34 0 0;a41 a42 0 a44 0
0;0 a52 a53 a54 a55 a56;0 a52 a63 a64 a65 a66];
C = [-f1; -f2; -f3; -f4; -f5; -f6];
B=inv(A)*C;
t5=t5+B(1);
t6=t6+B(2);
t7=t7+B(3);
t8=t8+B(4);
t12=t12+B(5);
t13=t13+B(6);
end
v11=r1*sin(t1);
v12=-r1*cos(t1);
w11=-r5*sin(t5);
                   w13=-r7*sin(t7);
w21=r5*cos(t5);
                   w23=r7*cos(t7);
w31 = -r5 * sin(t5);
                   w32=r6*sin(t6); w34=r8*sin(t8);
w41=r5*cos(t5);
                   w42=-r6*cos(t6); w44=-r8*cos(t8);
w52=-r9*sin(t9);
                   w53 = -r7 + sin(t7) + r10 + sin(t10); w54 = -r8 + sin(t8);
w55=-r12*sin(t12); w56=r13*sin(t13);
w62=r9*cos(t9);
                   w63=r7*cos(t7)-r10*cos(t10); w64=r8*cos(t8);
w65=r12*cos(t12); w66=-r13*cos(t13);
S=[w11 0 w13 0 0 0;w21 0 w23 0 0 0;w31 w32 0 w34 0 0;w41 w42 0 w44 0
```

```
0;0 w52 w53 w54 w55 w56;0 w62 w63 w64 w65 w66];
V = [v11; v12; 0; 0; 0; 0];
W=inv(S)*V;
w5=W(1,1);
w6=W(2,1);
w7=W(3,1);
w8=W(4,1);
w12=W(5,1);
w13=W(6,1);
W5(i)=w5;
W6(i)=w6;
W7(i)=w7;
W8(i)=w8;
W12(i)=w12;
W13(i)=w13;
p11=-r5*sin(t5); p13=-r7*sin(t7);
                  p23=r7*cos(t7);
p21=r5*cos(t5);
p31=-r5*sin(t5); p32=r6*sin(t6); p34=r8*sin(t8);
                  p42=-r6*cos(t6); p44=-r8*cos(t8);
p41=r5*cos(t5);
                  p53=-r7*sin(t7)+r10*sin(t10); p54=-r8*sin(t8);
p52 = -r9 * sin(t9);
p55=-r12*sin(t12); p56=r13*sin(t13);
p62=r9*cos(t9);
                  p63=r7*cos(t7)-r10*cos(t10); p64=r8*cos(t8);
                   p66=-r13*cos(t13);
p65=r12*cos(t12);
w1=0;w2=0;w3=0;
g1=0;g2=0;g3=0;
p1=r5*cos(t5)*(w5^2)+r7*cos(t7)*(w7^2);
p2=r5*cos(t5)*(w5^2)+r7*sin(t7)*(w7^2);
p3=r5*cos(t5)*(w5^2)+r6*cos(t6)*(w6^2)+r8*cos(t8)*(w8^2);
p4=r5*sin(t5)*(w5^2)+r6*sin(t6)*(w6^2)-r8*sin(t8)*(w8^2);
p5=r9*cos(t9)*(w6^2)+r7*cos(t7)*(w7^2)-r10*cos(t10)*(w7^2)+r8*cos(
t8) * (w8^2) +r12*cos(t12) * (w12^2) -r13*cos(t13) * (w13^2);
p6=r9*sin(t9)*(w6^2)-r7*sin(t7)*(w7^2)-r10*sin(t10)*(w7^2)+r8*sin(
t8) * (w8^2) -r12*sin(t12) * (w12^2) -r13*sin(t13) * (w13^2);
P=[p11 0 p13 0 0 0;p21 0 p23 0 0 0;p31 p32 0 p34 0 0;p41 p42 0 p44 0
0;0 p52 p53 p54 p55 p56;0 p62 p63 p64 p65 p66];
L=[p1;p2;p3;p4;0;0];
Z=inv(P)*L;
z5=Z(1);
z = Z(2);
z7=Z(3);
z 8 = Z (4);
z12=Z(5);
z13=Z(6);
Z5(i) = z5;
Z6(i) = z6;
Z7(i) = z7;
Z8(i)=z8;
Z12(i)=z12;
Z13(i)=z13;
y1=r1*sin(t1)+r10*sin(t10)+r13*sin(t13);
x1=r1*cos(t1)+r10*cos(t10)+r13*cos(t13);
Y1(i)=y1;
X1(i)=x1;
y2=r1*sin(t1)+r10*sin(t10)+r13*sin(t13)+60*sin(t12);
x2=r1*cos(t1)+r10*cos(t10)+r13*cos(t13)+60*cos(t12);
Y2(i)=y2;
X2(i) = x2;
t1=t1/rad;
t5=t5/rad;
t6=t6/rad;
```

t7=t7/rad;
t8=t8/rad;
t9=t9/rad;
t12=t12/rad;
t13=t13/rad;
T1(i)=t1;
T5(i) = t5;
$T_{6}(i) = t_{6};$
$T_{7}(i) = +7$:
T8(i) = t8:
$T_{12}(i) = \pm 12$
$T_{12}(1) = 13$
and
figure (1) ·plot (V1 V1)
r_{1}
$a_{XIS}([50, 150, -100, -80])$
rigure(2); prot(X2, 12)
axis([30,120,-214,-124])
figure(3);plot(T1,T13);
figure(4);plot(T1,T12);
figure(5);plot(T1,W13);
figure(6);plot(T1,Z13);
figure(7);plot(T1,Z6);
figure(8);plot(T12,T13);
figure(9);plot(T1,W6);